Citation: XU Qingqing, CHANG Chunmei, LI Wanbin, GUO Bing, GUO Xia, ZHANG Maojie. Non-Fullerene Polymer Solar Cells Based on a New Polythiophene Derivative as Donor[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 268-274. doi: 10.3866/PKU.WHXB201803261 shu

Non-Fullerene Polymer Solar Cells Based on a New Polythiophene Derivative as Donor

  • Corresponding author: GUO Xia, guoxia@suda.edu.cn ZHANG Maojie, mjzhang@suda.edu.cn
  • Received Date: 13 February 2018
    Revised Date: 19 March 2018
    Accepted Date: 20 March 2018
    Available Online: 26 March 2018

    Fund Project: the National Natural Science Foundation of China 91633301The project was supported by the National Natural Science Foundation of China (51503135, 51573120, 51773142, 91633301) and the Jiangsu Provincial Natural Science Foundation, China (BK20150332)the National Natural Science Foundation of China 51503135the Jiangsu Provincial Natural Science Foundation, China BK20150332the National Natural Science Foundation of China 51773142the National Natural Science Foundation of China 51573120

  • With the development of non-fullerene small-molecule acceptors, non-fullerene polymer solar cells (PSCs) have garnered increased attention due to their high performance. While photons are absorbed and converted to free charge carriers in the active layer, the donor and acceptor materials both play a critical role in determining the performance of PSCs. Among the various conjugated-polymer donor materials, polythiophene (PT) derivatives such as poly(3-hexylthiophene), have attracted considerable interest due to their high hole mobility and simple synthesis. However, there are limited studies on the applications of PT derivatives in non-fullerene PSCs. Fabrication of highly efficient non-fullerene PSCs utilizing PT derivatives as the donor is a challenging topic. In this study, a new PT derivative, poly[5, 5′-4, 4′-bis(2-butyloctylsulphanyl)-2, 2′-bithiophene-alt-5, 5′-4, 4′-difluoro-2, 2′-bithiophene] (PBSBT-2F), with alkylthio groups and fluorination was synthesized for use as the donor in non-fullerene PSC applications. The absorption spectra, electrochemical properties, molecular packing, and photovoltaic properties of PBSBT-2F were investigated and compared with those of poly(3-hexylthiophene) (P3HT). The polymer exhibited a wide bandgap of 1.82 eV, a deep highest occupied molecular orbital (HOMO) of -5.02 eV, and an ordered molecular packing structure. Following this observation, PSCs based on a blend of PBSBT-2F as the donor and 3, 9-bis(2-methylene-(3-(1, 1-dicyanomethylene)-indanone)-5, 5, 11, 11-tetrakis(4-hexylphenyl)-dithieno-[2, 3-d:2′, 3′-d′]-s-indaceno[1, 2-b:5, 6-b′]dithiophene (ITIC) as the acceptor were fabricated. The absorption spectra were collected and the energy levels were found to be well matched. These devices exhibited a power conversion efficiency (PCE) of 6.7% with an open-circuit voltage (VOC) of 0.75 V, a short-circuit current density (JSC) of 13.5 mA·cm-2, and a fill factor (FF) of 66.6%. These properties were superior to those of P3HT (1.2%) under the optimal conditions. This result indicates that PBSBT-2F is a promising donor material for non-fullerene PSCs.
  • 加载中
    1. [1]

      Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Science 2014, 345, 542. doi: 10.1126/science.1254050  doi: 10.1126/science.1254050

    2. [2]

      Liu, Z. H.; Hu, J. N.; Jiao, H. Y.; Li, L.; Zheng, G. H. J.; Chen, Y. H.; Huang, Y.; Zhang, Q.; Shen, C.; Chen, Q.; et al. Adv. Mater. 2017, 29, 160677. doi: 10.1002/adma.201606774  doi: 10.1002/adma.201606774

    3. [3]

      Green, M. A.; Hobaillie, A. ACS Energy Lett. 2017, 2, 822. doi: 10.1021/acsenergylett.7b00137  doi: 10.1021/acsenergylett.7b00137

    4. [4]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    5. [5]

      Chen, J. W.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709. doi: 10.1021/ar900061z  doi: 10.1021/ar900061z

    6. [6]

      Li, Y. Acc. Chem. Res. 2012, 45, 723. doi: 10.1021/ar2002446  doi: 10.1021/ar2002446

    7. [7]

      Guo, B.; Guo, X.; Li, W.; Meng, X. Y.; Ma, W.; Zhang, M. J.; Li, Y. F. J. Mater. Chem. A 2016, 4, 13251. doi: 10.1039/c6ta04950h  doi: 10.1039/c6ta04950h

    8. [8]

      Zhang, M. J.; Guo, X.; Ma, W.; Ade, H.; Hou, J. Adv. Mater. 2014, 26, 5880. doi: 10.1002/adma.201401494  doi: 10.1002/adma.201401494

    9. [9]

      Li, W. B; Guo, B.; Chang, C. M; Guo, X.; Zhang, M. J.; Li, Y. F. J. Mater. Chem. A 2016, 4, 10135. doi: 10.1039/c6ta04030f  doi: 10.1039/c6ta04030f

    10. [10]

      Xu, Z.; Fan, Q. P.; Meng, X. Y.; Guo, X.; Su, W. Y.; Ma, W.; Zhang, M. J.; Li, Y. Chem. Mater. 2017, 29, 4811. doi: 10.1021/acs.chemmater.7b00729  doi: 10.1021/acs.chemmater.7b00729

    11. [11]

      Guo, X.; Cui, C. H.; Zhang, M. J.; Huo, L. J.; Huang, Y.; Hou, J.; Li, Y. F. Energy Environ. Sci. 2012, 5, 7943. doi: 10.1039/c2ee21481d  doi: 10.1039/c2ee21481d

    12. [12]

      Qian, D. P.; Wei, M.; Li, Z. J.; Xia, G.; Zhang, S. Q.; Ye, L.; Ade, H.; Tan, Z. A.; Hou, J. H. J. Am. Chem. Soc. 2013, 135, 8464. doi: 10.1021/ja402971d  doi: 10.1021/ja402971d

    13. [13]

      Fan, Q. P.; Su, W. Y.; Guo, X.; Guo, B.; Li, W. B.; Zhang, Y. D.; Wang, K.; Zhang, M. J.; Li, Y. F. Adv. Energy Mater. 2016, 6, 1600430. doi: 10.1002/aenm.201600430  doi: 10.1002/aenm.201600430

    14. [14]

      Xiao, B.; Tang, A. L.; Zhang, J. Q.; Mahmood, A.; Wei, Z. X.; Zhou, E. Adv. Energy Mater. 2017, 7, 1602269. doi: 10.1002/aenm.201602269  doi: 10.1002/aenm.201602269

    15. [15]

      Xiao, B.; Tang, A. L.; Yang, J.; Wei, Z. X.; Zhou, E. ACS Macro Lett. 2017, 6, 410. doi: 10.1021/acsmacrolett.7b00097  doi: 10.1021/acsmacrolett.7b00097

    16. [16]

      Xiao, B.; Tang, A. L.; Cheng, L. X.; Zhang, J. Q.; Wei, Z. X.; Zeng, Q. D.; Zhou, E. Sol. RRL 2017, 1, 1700166. doi: 10.1002/solr.201700166  doi: 10.1002/solr.201700166

    17. [17]

      Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. doi: 10.1002/adfm.200500211  doi: 10.1002/adfm.200500211

    18. [18]

      Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. doi: 10.1038/nmat1500  doi: 10.1038/nmat1500

    19. [19]

      Jin, Y. K.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222. doi: 10.1126/science.1141711  doi: 10.1126/science.1141711

    20. [20]

      Dang, M. T.; Hirsch, L.; Wantz, G.; Wuest, J. D. Chem. Rev. 2013, 113, 3734. doi: 10.1021/cr300005u  doi: 10.1021/cr300005u

    21. [21]

      Lin, Y. Z.; Zhang, Z. G.; Bai, H. T.; Wang, J. Y.; Yao, Y. H.; Li, Y. F.; Zhu, D. B; Zhan, X. W. Energy Environ. Sci. 2015, 8, 610. doi: 10.1039/C4EE03424d  doi: 10.1039/C4EE03424d

    22. [22]

      Lin, Y. Z; Zhao, F. W; He, Q.; Huo, L. J.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y. M.; Wang, C. R.; Zhu, D. B.; et al. J. Am. Chem. Soc. 2016, 138, 4955. doi: 10.1021/jacs.6b02004  doi: 10.1021/jacs.6b02004

    23. [23]

      Zhao, F. W.; Dai, S. X.; Wu, Y.; Zhang, Q. Q.; Wang, J. Y.; Jiang, L.; Ling, Q. D.; Wei, Z. X.; Ma, W.; You, W.; et al. Adv. Mater. 2017, 29, 1700144. doi: 10.1002/adma.201700144  doi: 10.1002/adma.201700144

    24. [24]

      Fan, Q.; Su, W.; Meng, X. Y.; Guo, X.; Li, G.; Ma, W.; Zhang, M. J.; Li, Y. F. Sol. RRL 2017, 1, 1700020. doi: 10.1002/solr.201700020  doi: 10.1002/solr.201700020

    25. [25]

      Fan, Q.; Xu, Z.; Guo, X.; Meng, X. Y.; Li, W. B.; Su, W. Y.; Ou, X. M.; Ma, W.; Zhang, M. J.; Li, Y. F. Nano Energy 2017, 40, 20. doi: 10.1016/j.nanoen.2017.07.047  doi: 10.1016/j.nanoen.2017.07.047

    26. [26]

      Guo, B.; Li, W. B.; Guo, X.; Meng, X. Y.; Ma, W.; Zhang, M. J.; Li, Y. F. Adv. Mater. 2017, 29, 1702291. doi: 10.1002/adma.201702291  doi: 10.1002/adma.201702291

    27. [27]

      Li, W. B.; Li, G. D.; Guo, X.; Guo, B.; Bi, Z. Z.; Guo, H.; Ma, W.; Ou, X. M.; Zhang, M.; Li, Y. F. J. Mater. Chem. A 2017, 5, 19680. doi: 10.1039/c7ta06476d  doi: 10.1039/c7ta06476d

    28. [28]

      Wang, Y.; Fan, Q. P.; Guo, X.; Li, W. B.; Guo, B.; Su, W. Y.; Ou, X. M.; Zhang, M. J. J. Mater. Chem. A 2017, 5, 22180. doi: 10.1039/c7ta07785h  doi: 10.1039/c7ta07785h

    29. [29]

      Zhang, S. Q.; Hou, J. H. Acta Phys. -Chim. Sin. 2017, 33, 2327.  doi: 10.3866/PKU.WHXB201706161

    30. [30]

      Yao, H. F.; Cui, Y.; Yu, R. N.; Gao, B.; Zhang, H.; Hou, J. F. Angew. Chem. Int. Ed. 2017, 56, 3045. doi: 10.1002/anie.201610944  doi: 10.1002/anie.201610944

    31. [31]

      Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Thomas, P. R.; Zhang, M. J.; Li, Y. F. Sci. China Chem. 2018, doi: 10.1007/s11426-017-9199-1  doi: 10.1007/s11426-017-9199-1

    32. [32]

      Xu, X. P.; Yu, T.; Bi, Z. Z.; Ma, W.; Li, Y.; Peng, Q. Adv. Mater. 2017, 30, 1703973. doi: 10.1002/adma.201703973  doi: 10.1002/adma.201703973

    33. [33]

      Bin, H. J.; Zhang, Z. G.; Gao, L.; Chen, S. S.; Zhong, L.; Xue, L. W.; Yang, C. D.; Li, Y. F. J. Am. Chem. Soc. 2016, 138, 4657. doi: 10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    34. [34]

      Guo, B.; Li, W. B.; Guo, X.; Meng, X. Y.; Ma, W.; Zhang, M. J.; Li, Y. F. Nano Energy 2017, 34, 556. doi: 10.1016/j.nanoen.2017.03.013  doi: 10.1016/j.nanoen.2017.03.013

    35. [35]

      Zhang, Z. -G.; Li, Y. F. Sci. China Chem. 2015, 58, 192. doi: 10.1007/s11426-014-5260-2  doi: 10.1007/s11426-014-5260-2

    36. [36]

      Qin, Y. P.; Uddin, M. A.; Chen, Y.; Jang, B.; Zhao, K.; Zheng, Z.; Yu, R. N.; Shin, T. J.; Woo, H. Y.; Hou, J. H. Adv. Mater. 2016, 28, 9416. doi: 10.1002/adma.201601803  doi: 10.1002/adma.201601803

    37. [37]

      Huo, L. J.; Zhou, Y.; Li, Y. F. Macromol. Rapid Commun. 2009, 30, 925. doi: 10.1002/marc.200800785  doi: 10.1002/marc.200800785

    38. [38]

      Zhang, Z.; Lu, Z.; Zhang, J. C.; Liu, Y. H.; Feng, S. Y.; Wu, L. L.; Hou, R.; Xu, X. J.; Bo, Z. S. Org. Electron. 2017, 40, 36. doi: 10.1016/j.orgel.2016.10.032  doi: 10.1016/j.orgel.2016.10.032

    39. [39]

      Parenti, F.; Morvillo, P.; Bobeico, E.; Diana, R.; Lanzi, M.; Fontanesi, C.; Tassinari, F.; Schenetti, L.; Mucci, A. Eur. J. Org. Chem. 2011, 2011, 5659. doi: 10.1002/ejoc.201100738  doi: 10.1002/ejoc.201100738

    40. [40]

      Di Maria, F.; Olivelli, P.; Gazzano, M.; Zanelli, A.; Biasiucci, M.; Gigli, G.; Gentili, D.; D'Angelo, P.; Cavallini, M.; Barbarella, G. J. Am. Chem. Soc. 2011, 133, 8654. doi: 10.1021/ja2014949  doi: 10.1021/ja2014949

    41. [41]

      Cui, C. H.; Wong, W. Y. Macromol. Rapid Commun. 2016, 37, 287. doi: 10.1002/marc.201500620  doi: 10.1002/marc.201500620

    42. [42]

      Zhang, M. J.; Guo, X.; Zhang, S. Q.; Hou, J. Adv. Mater. 2014, 26, 1118. doi: 10.1002/adma.201304427  doi: 10.1002/adma.201304427

    43. [43]

      Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868. doi: 10.1021/cr900182s  doi: 10.1021/cr900182s

    44. [44]

      Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. J. Am. Chem. Soc. 2011, 133, 4625. doi: 10.1021/ja1112595  doi: 10.1021/ja1112595

    45. [45]

      Nguyen, T. L.; Choi, H.; Ko, S. J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J. E.; Yun, M. H.; Shin, T. J.; Hwang, S.; et al. Energy Environ. Sci. 2014, 7, 3040. doi: 10.1039/c4ee01529k.  doi: 10.1039/c4ee01529k

    46. [46]

      Jheng, J. F.; Lai, Y. Y.; Wu, J. S.; Chao, Y. H.; Wang, C. L.; Hsu, C. S. Adv. Mater. 2013, 25, 2445. doi: 10.1002/adma.201300098  doi: 10.1002/adma.201300098

    47. [47]

      Li, Y. F.; Cao, Y.; Gao, J.; Wang, D. L.; Yu, G.; Heeger, A. J. Synth. Met. 1999, 99, 243. doi: 10.1016/S0379-6779(99)00007-7  doi: 10.1016/S0379-6779(99)00007-7

    48. [48]

      Guo, X.; Zhang, M. J.; Tan, J. H.; Zhang, S. Q.; Huo, L. J.; Hu, W. P; Li, Y. F; Hou, J. H. Adv. Mater. 2012, 24, 6536. doi: 10.1002/adma.201202719  doi: 10.1002/adma.201202719

    49. [49]

      Hou, J. H.; Tan, Z. A.; Yan, Y.; He, Y. J.; Yang, C. H.; Li, Y. F. J. Am. Chem. Soc. 2006, 128, 4911. doi: 10.1021/ja060141m  doi: 10.1021/ja060141m

    50. [50]

      Becke, A. D. J. Chem. Phys. 1992, 96, 2155. doi: 10.1063/1.462066  doi: 10.1063/1.462066

    51. [51]

      Lee, C.; Yang, W.; Parr, R. G.; Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785  doi: 10.1103/PhysRevB.37.785

    52. [52]

      Liu, Y. S.; Chen, C. C.; Hong, Z.; Gao, J.; Yang, Y. M.; Zhou, H. P.; Dou, L.; Li, G.; Yang, Y. Sci. Rep. 2013, 3, 3356. doi: 10.1038/srep03356  doi: 10.1038/srep03356

    53. [53]

      Wan, Q.; Guo, X.; Wang, Z. Y.; Li, W. B.; Guo, B.; Ma, W.; Zhang, M. J.; Li, Y. F. Adv. Funct. Mater. 2016, 26, 6635. doi: 10.1002/adfm.201602181  doi: 10.1002/adfm.201602181

    54. [54]

      Wu, J. L.; Chen, F. C.; Hsiao, Y. S.; Chien, F. C.; Chen, P.; Kuo, C. H.; Huang, M. H.; Hsu, C. S. ACS Nano 2011, 5, 959. doi: 10.1021/nn102295p  doi: 10.1021/nn102295p

    55. [55]

      Lenes, M.; Morana, M.; Brabec, C. J.; Blom, P. W. M. Adv. Funct. Mater. 2009, 19, 1106. doi: 10.1002/adfm.200801514  doi: 10.1002/adfm.200801514

  • 加载中
    1. [1]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    2. [2]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    3. [3]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    4. [4]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    5. [5]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    6. [6]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    7. [7]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    10. [10]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    11. [11]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    12. [12]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    13. [13]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    14. [14]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    15. [15]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    16. [16]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    17. [17]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    18. [18]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    19. [19]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    20. [20]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

Metrics
  • PDF Downloads(10)
  • Abstract views(628)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return