Citation: XU Qingqing, CHANG Chunmei, LI Wanbin, GUO Bing, GUO Xia, ZHANG Maojie. Non-Fullerene Polymer Solar Cells Based on a New Polythiophene Derivative as Donor[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 268-274. doi: 10.3866/PKU.WHXB201803261 shu

Non-Fullerene Polymer Solar Cells Based on a New Polythiophene Derivative as Donor

  • Corresponding author: GUO Xia, guoxia@suda.edu.cn ZHANG Maojie, mjzhang@suda.edu.cn
  • Received Date: 13 February 2018
    Revised Date: 19 March 2018
    Accepted Date: 20 March 2018
    Available Online: 26 March 2018

    Fund Project: the National Natural Science Foundation of China 91633301The project was supported by the National Natural Science Foundation of China (51503135, 51573120, 51773142, 91633301) and the Jiangsu Provincial Natural Science Foundation, China (BK20150332)the National Natural Science Foundation of China 51503135the Jiangsu Provincial Natural Science Foundation, China BK20150332the National Natural Science Foundation of China 51773142the National Natural Science Foundation of China 51573120

  • With the development of non-fullerene small-molecule acceptors, non-fullerene polymer solar cells (PSCs) have garnered increased attention due to their high performance. While photons are absorbed and converted to free charge carriers in the active layer, the donor and acceptor materials both play a critical role in determining the performance of PSCs. Among the various conjugated-polymer donor materials, polythiophene (PT) derivatives such as poly(3-hexylthiophene), have attracted considerable interest due to their high hole mobility and simple synthesis. However, there are limited studies on the applications of PT derivatives in non-fullerene PSCs. Fabrication of highly efficient non-fullerene PSCs utilizing PT derivatives as the donor is a challenging topic. In this study, a new PT derivative, poly[5, 5′-4, 4′-bis(2-butyloctylsulphanyl)-2, 2′-bithiophene-alt-5, 5′-4, 4′-difluoro-2, 2′-bithiophene] (PBSBT-2F), with alkylthio groups and fluorination was synthesized for use as the donor in non-fullerene PSC applications. The absorption spectra, electrochemical properties, molecular packing, and photovoltaic properties of PBSBT-2F were investigated and compared with those of poly(3-hexylthiophene) (P3HT). The polymer exhibited a wide bandgap of 1.82 eV, a deep highest occupied molecular orbital (HOMO) of -5.02 eV, and an ordered molecular packing structure. Following this observation, PSCs based on a blend of PBSBT-2F as the donor and 3, 9-bis(2-methylene-(3-(1, 1-dicyanomethylene)-indanone)-5, 5, 11, 11-tetrakis(4-hexylphenyl)-dithieno-[2, 3-d:2′, 3′-d′]-s-indaceno[1, 2-b:5, 6-b′]dithiophene (ITIC) as the acceptor were fabricated. The absorption spectra were collected and the energy levels were found to be well matched. These devices exhibited a power conversion efficiency (PCE) of 6.7% with an open-circuit voltage (VOC) of 0.75 V, a short-circuit current density (JSC) of 13.5 mA·cm-2, and a fill factor (FF) of 66.6%. These properties were superior to those of P3HT (1.2%) under the optimal conditions. This result indicates that PBSBT-2F is a promising donor material for non-fullerene PSCs.
  • 加载中
    1. [1]

      Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Science 2014, 345, 542. doi: 10.1126/science.1254050  doi: 10.1126/science.1254050

    2. [2]

      Liu, Z. H.; Hu, J. N.; Jiao, H. Y.; Li, L.; Zheng, G. H. J.; Chen, Y. H.; Huang, Y.; Zhang, Q.; Shen, C.; Chen, Q.; et al. Adv. Mater. 2017, 29, 160677. doi: 10.1002/adma.201606774  doi: 10.1002/adma.201606774

    3. [3]

      Green, M. A.; Hobaillie, A. ACS Energy Lett. 2017, 2, 822. doi: 10.1021/acsenergylett.7b00137  doi: 10.1021/acsenergylett.7b00137

    4. [4]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    5. [5]

      Chen, J. W.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709. doi: 10.1021/ar900061z  doi: 10.1021/ar900061z

    6. [6]

      Li, Y. Acc. Chem. Res. 2012, 45, 723. doi: 10.1021/ar2002446  doi: 10.1021/ar2002446

    7. [7]

      Guo, B.; Guo, X.; Li, W.; Meng, X. Y.; Ma, W.; Zhang, M. J.; Li, Y. F. J. Mater. Chem. A 2016, 4, 13251. doi: 10.1039/c6ta04950h  doi: 10.1039/c6ta04950h

    8. [8]

      Zhang, M. J.; Guo, X.; Ma, W.; Ade, H.; Hou, J. Adv. Mater. 2014, 26, 5880. doi: 10.1002/adma.201401494  doi: 10.1002/adma.201401494

    9. [9]

      Li, W. B; Guo, B.; Chang, C. M; Guo, X.; Zhang, M. J.; Li, Y. F. J. Mater. Chem. A 2016, 4, 10135. doi: 10.1039/c6ta04030f  doi: 10.1039/c6ta04030f

    10. [10]

      Xu, Z.; Fan, Q. P.; Meng, X. Y.; Guo, X.; Su, W. Y.; Ma, W.; Zhang, M. J.; Li, Y. Chem. Mater. 2017, 29, 4811. doi: 10.1021/acs.chemmater.7b00729  doi: 10.1021/acs.chemmater.7b00729

    11. [11]

      Guo, X.; Cui, C. H.; Zhang, M. J.; Huo, L. J.; Huang, Y.; Hou, J.; Li, Y. F. Energy Environ. Sci. 2012, 5, 7943. doi: 10.1039/c2ee21481d  doi: 10.1039/c2ee21481d

    12. [12]

      Qian, D. P.; Wei, M.; Li, Z. J.; Xia, G.; Zhang, S. Q.; Ye, L.; Ade, H.; Tan, Z. A.; Hou, J. H. J. Am. Chem. Soc. 2013, 135, 8464. doi: 10.1021/ja402971d  doi: 10.1021/ja402971d

    13. [13]

      Fan, Q. P.; Su, W. Y.; Guo, X.; Guo, B.; Li, W. B.; Zhang, Y. D.; Wang, K.; Zhang, M. J.; Li, Y. F. Adv. Energy Mater. 2016, 6, 1600430. doi: 10.1002/aenm.201600430  doi: 10.1002/aenm.201600430

    14. [14]

      Xiao, B.; Tang, A. L.; Zhang, J. Q.; Mahmood, A.; Wei, Z. X.; Zhou, E. Adv. Energy Mater. 2017, 7, 1602269. doi: 10.1002/aenm.201602269  doi: 10.1002/aenm.201602269

    15. [15]

      Xiao, B.; Tang, A. L.; Yang, J.; Wei, Z. X.; Zhou, E. ACS Macro Lett. 2017, 6, 410. doi: 10.1021/acsmacrolett.7b00097  doi: 10.1021/acsmacrolett.7b00097

    16. [16]

      Xiao, B.; Tang, A. L.; Cheng, L. X.; Zhang, J. Q.; Wei, Z. X.; Zeng, Q. D.; Zhou, E. Sol. RRL 2017, 1, 1700166. doi: 10.1002/solr.201700166  doi: 10.1002/solr.201700166

    17. [17]

      Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct. Mater. 2005, 15, 1617. doi: 10.1002/adfm.200500211  doi: 10.1002/adfm.200500211

    18. [18]

      Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. doi: 10.1038/nmat1500  doi: 10.1038/nmat1500

    19. [19]

      Jin, Y. K.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222. doi: 10.1126/science.1141711  doi: 10.1126/science.1141711

    20. [20]

      Dang, M. T.; Hirsch, L.; Wantz, G.; Wuest, J. D. Chem. Rev. 2013, 113, 3734. doi: 10.1021/cr300005u  doi: 10.1021/cr300005u

    21. [21]

      Lin, Y. Z.; Zhang, Z. G.; Bai, H. T.; Wang, J. Y.; Yao, Y. H.; Li, Y. F.; Zhu, D. B; Zhan, X. W. Energy Environ. Sci. 2015, 8, 610. doi: 10.1039/C4EE03424d  doi: 10.1039/C4EE03424d

    22. [22]

      Lin, Y. Z; Zhao, F. W; He, Q.; Huo, L. J.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y. M.; Wang, C. R.; Zhu, D. B.; et al. J. Am. Chem. Soc. 2016, 138, 4955. doi: 10.1021/jacs.6b02004  doi: 10.1021/jacs.6b02004

    23. [23]

      Zhao, F. W.; Dai, S. X.; Wu, Y.; Zhang, Q. Q.; Wang, J. Y.; Jiang, L.; Ling, Q. D.; Wei, Z. X.; Ma, W.; You, W.; et al. Adv. Mater. 2017, 29, 1700144. doi: 10.1002/adma.201700144  doi: 10.1002/adma.201700144

    24. [24]

      Fan, Q.; Su, W.; Meng, X. Y.; Guo, X.; Li, G.; Ma, W.; Zhang, M. J.; Li, Y. F. Sol. RRL 2017, 1, 1700020. doi: 10.1002/solr.201700020  doi: 10.1002/solr.201700020

    25. [25]

      Fan, Q.; Xu, Z.; Guo, X.; Meng, X. Y.; Li, W. B.; Su, W. Y.; Ou, X. M.; Ma, W.; Zhang, M. J.; Li, Y. F. Nano Energy 2017, 40, 20. doi: 10.1016/j.nanoen.2017.07.047  doi: 10.1016/j.nanoen.2017.07.047

    26. [26]

      Guo, B.; Li, W. B.; Guo, X.; Meng, X. Y.; Ma, W.; Zhang, M. J.; Li, Y. F. Adv. Mater. 2017, 29, 1702291. doi: 10.1002/adma.201702291  doi: 10.1002/adma.201702291

    27. [27]

      Li, W. B.; Li, G. D.; Guo, X.; Guo, B.; Bi, Z. Z.; Guo, H.; Ma, W.; Ou, X. M.; Zhang, M.; Li, Y. F. J. Mater. Chem. A 2017, 5, 19680. doi: 10.1039/c7ta06476d  doi: 10.1039/c7ta06476d

    28. [28]

      Wang, Y.; Fan, Q. P.; Guo, X.; Li, W. B.; Guo, B.; Su, W. Y.; Ou, X. M.; Zhang, M. J. J. Mater. Chem. A 2017, 5, 22180. doi: 10.1039/c7ta07785h  doi: 10.1039/c7ta07785h

    29. [29]

      Zhang, S. Q.; Hou, J. H. Acta Phys. -Chim. Sin. 2017, 33, 2327.  doi: 10.3866/PKU.WHXB201706161

    30. [30]

      Yao, H. F.; Cui, Y.; Yu, R. N.; Gao, B.; Zhang, H.; Hou, J. F. Angew. Chem. Int. Ed. 2017, 56, 3045. doi: 10.1002/anie.201610944  doi: 10.1002/anie.201610944

    31. [31]

      Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Thomas, P. R.; Zhang, M. J.; Li, Y. F. Sci. China Chem. 2018, doi: 10.1007/s11426-017-9199-1  doi: 10.1007/s11426-017-9199-1

    32. [32]

      Xu, X. P.; Yu, T.; Bi, Z. Z.; Ma, W.; Li, Y.; Peng, Q. Adv. Mater. 2017, 30, 1703973. doi: 10.1002/adma.201703973  doi: 10.1002/adma.201703973

    33. [33]

      Bin, H. J.; Zhang, Z. G.; Gao, L.; Chen, S. S.; Zhong, L.; Xue, L. W.; Yang, C. D.; Li, Y. F. J. Am. Chem. Soc. 2016, 138, 4657. doi: 10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    34. [34]

      Guo, B.; Li, W. B.; Guo, X.; Meng, X. Y.; Ma, W.; Zhang, M. J.; Li, Y. F. Nano Energy 2017, 34, 556. doi: 10.1016/j.nanoen.2017.03.013  doi: 10.1016/j.nanoen.2017.03.013

    35. [35]

      Zhang, Z. -G.; Li, Y. F. Sci. China Chem. 2015, 58, 192. doi: 10.1007/s11426-014-5260-2  doi: 10.1007/s11426-014-5260-2

    36. [36]

      Qin, Y. P.; Uddin, M. A.; Chen, Y.; Jang, B.; Zhao, K.; Zheng, Z.; Yu, R. N.; Shin, T. J.; Woo, H. Y.; Hou, J. H. Adv. Mater. 2016, 28, 9416. doi: 10.1002/adma.201601803  doi: 10.1002/adma.201601803

    37. [37]

      Huo, L. J.; Zhou, Y.; Li, Y. F. Macromol. Rapid Commun. 2009, 30, 925. doi: 10.1002/marc.200800785  doi: 10.1002/marc.200800785

    38. [38]

      Zhang, Z.; Lu, Z.; Zhang, J. C.; Liu, Y. H.; Feng, S. Y.; Wu, L. L.; Hou, R.; Xu, X. J.; Bo, Z. S. Org. Electron. 2017, 40, 36. doi: 10.1016/j.orgel.2016.10.032  doi: 10.1016/j.orgel.2016.10.032

    39. [39]

      Parenti, F.; Morvillo, P.; Bobeico, E.; Diana, R.; Lanzi, M.; Fontanesi, C.; Tassinari, F.; Schenetti, L.; Mucci, A. Eur. J. Org. Chem. 2011, 2011, 5659. doi: 10.1002/ejoc.201100738  doi: 10.1002/ejoc.201100738

    40. [40]

      Di Maria, F.; Olivelli, P.; Gazzano, M.; Zanelli, A.; Biasiucci, M.; Gigli, G.; Gentili, D.; D'Angelo, P.; Cavallini, M.; Barbarella, G. J. Am. Chem. Soc. 2011, 133, 8654. doi: 10.1021/ja2014949  doi: 10.1021/ja2014949

    41. [41]

      Cui, C. H.; Wong, W. Y. Macromol. Rapid Commun. 2016, 37, 287. doi: 10.1002/marc.201500620  doi: 10.1002/marc.201500620

    42. [42]

      Zhang, M. J.; Guo, X.; Zhang, S. Q.; Hou, J. Adv. Mater. 2014, 26, 1118. doi: 10.1002/adma.201304427  doi: 10.1002/adma.201304427

    43. [43]

      Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868. doi: 10.1021/cr900182s  doi: 10.1021/cr900182s

    44. [44]

      Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. J. Am. Chem. Soc. 2011, 133, 4625. doi: 10.1021/ja1112595  doi: 10.1021/ja1112595

    45. [45]

      Nguyen, T. L.; Choi, H.; Ko, S. J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J. E.; Yun, M. H.; Shin, T. J.; Hwang, S.; et al. Energy Environ. Sci. 2014, 7, 3040. doi: 10.1039/c4ee01529k.  doi: 10.1039/c4ee01529k

    46. [46]

      Jheng, J. F.; Lai, Y. Y.; Wu, J. S.; Chao, Y. H.; Wang, C. L.; Hsu, C. S. Adv. Mater. 2013, 25, 2445. doi: 10.1002/adma.201300098  doi: 10.1002/adma.201300098

    47. [47]

      Li, Y. F.; Cao, Y.; Gao, J.; Wang, D. L.; Yu, G.; Heeger, A. J. Synth. Met. 1999, 99, 243. doi: 10.1016/S0379-6779(99)00007-7  doi: 10.1016/S0379-6779(99)00007-7

    48. [48]

      Guo, X.; Zhang, M. J.; Tan, J. H.; Zhang, S. Q.; Huo, L. J.; Hu, W. P; Li, Y. F; Hou, J. H. Adv. Mater. 2012, 24, 6536. doi: 10.1002/adma.201202719  doi: 10.1002/adma.201202719

    49. [49]

      Hou, J. H.; Tan, Z. A.; Yan, Y.; He, Y. J.; Yang, C. H.; Li, Y. F. J. Am. Chem. Soc. 2006, 128, 4911. doi: 10.1021/ja060141m  doi: 10.1021/ja060141m

    50. [50]

      Becke, A. D. J. Chem. Phys. 1992, 96, 2155. doi: 10.1063/1.462066  doi: 10.1063/1.462066

    51. [51]

      Lee, C.; Yang, W.; Parr, R. G.; Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785  doi: 10.1103/PhysRevB.37.785

    52. [52]

      Liu, Y. S.; Chen, C. C.; Hong, Z.; Gao, J.; Yang, Y. M.; Zhou, H. P.; Dou, L.; Li, G.; Yang, Y. Sci. Rep. 2013, 3, 3356. doi: 10.1038/srep03356  doi: 10.1038/srep03356

    53. [53]

      Wan, Q.; Guo, X.; Wang, Z. Y.; Li, W. B.; Guo, B.; Ma, W.; Zhang, M. J.; Li, Y. F. Adv. Funct. Mater. 2016, 26, 6635. doi: 10.1002/adfm.201602181  doi: 10.1002/adfm.201602181

    54. [54]

      Wu, J. L.; Chen, F. C.; Hsiao, Y. S.; Chien, F. C.; Chen, P.; Kuo, C. H.; Huang, M. H.; Hsu, C. S. ACS Nano 2011, 5, 959. doi: 10.1021/nn102295p  doi: 10.1021/nn102295p

    55. [55]

      Lenes, M.; Morana, M.; Brabec, C. J.; Blom, P. W. M. Adv. Funct. Mater. 2009, 19, 1106. doi: 10.1002/adfm.200801514  doi: 10.1002/adfm.200801514

  • 加载中
    1. [1]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    4. [4]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    5. [5]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    6. [6]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    7. [7]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    8. [8]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    9. [9]

      Yiming FangHuimin GaoKaiting ChengLiang BaiZhengtong LiYadong ZhaoXingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925

    10. [10]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    11. [11]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    13. [13]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    14. [14]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    15. [15]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    16. [16]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    17. [17]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    18. [18]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

Metrics
  • PDF Downloads(10)
  • Abstract views(685)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return