Citation: ZHANG Jing, HE Youjun, MIN Jie. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1221-1238. doi: 10.3866/PKU.WHXB201803231 shu

Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials

  • Corresponding author: HE Youjun, heyoujun214@gmail.com MIN Jie, min.jie@whu.edu.cn
  • Received Date: 24 February 2018
    Revised Date: 19 March 2018
    Accepted Date: 20 March 2018
    Available Online: 23 November 2018

    Fund Project: the National Natural Science Foundation of China 51603021the National Natural Science Foundation of China 51773157The project was supported by the National Natural Science Foundation of China (51603021, 21702154, 51773157)the National Natural Science Foundation of China 21702154

  • Organic-inorganic perovskite solar cells (PSCs) have become one of the most promising solar cells, as the power conversion efficiency (PCE) has increased from less than 5% in 2009 to certified values of over 22%. In the typical PSC device architecture, hole transport materials that can effectively extract and transmit holes from the active layer to the counter electrode (HTMs) are indispensable. The well-known small molecule 2, 2', 7, 7'-tetrakis-(N, N-di-4-methoxy-phenyl amino)-9, 9'-spirobifluorene (spiro-OMeTAD) is the best choice for optimal perovskite device performance. Nevertheless, there is a consensus that spiro-OMeTAD by itself is not stable enough for long-term use in devices due to the sophisticated oxidation process associated with undesired ion migration/interactions. It has been found that spiro-OMeTAD can significantly contribute to the overall cost of materials required for the PSC manufacturing, thus its market price makes its use in large-scale production costly. Besides, another main drawback of spiro-OMeTAD is its poor reproducibility. To engineer HTMs that are considerably cheaper and more reproducible than spiro-OMeTAD, shorter reaction schemes with simple purification procedures are required. Furthermore, HTMs must possess a number of other qualities, including excellent charge transporting properties, good energy matching with the perovskite, transparency to solar radiation, a large Stokes shift, good solubility in organic solvents, morphologically stable film formation, and others. To date, hundreds of new organic semiconductor molecules have been synthesized for use as HTMs in perovskite solar cells. Successful examples include azomethine derivatives, branched methoxydiphenylamine-substituted fluorine derivatives, enamine derivatives, and many others. Some of these have been incorporated as HTMs in complete, functional PSCs capable of matching the performance of the best-performing PSCs prepared using spiro-OMeTAD while showing even better stability. In light of these results, we describe the advances made in the synthesis of HTMs that have been tested in perovskite solar cells, and give an overview of the molecular engineering of HTMs. Meanwhile, we highlight the effects of molecular structure on PCE and device stability of PSCs. This review is organized as follows. In the first part, we give a general introduction to the development of PSCs. In the second part, we focus on the introduction of the perovskite structure, device architecture, and relevant work principles in detail. In the third part, we discuss all kinds of molecular HTMs applied in PSCs. Special emphasis is placed on the relationship between HTM molecular structure and device function. Last but not least, we point out some existing challenges, suggest possible routes for further HTM design, and provide some conclusions.
  • 加载中
    1. [1]

      Yu, Z.; Sun, L. C. Adv. Energy Mater. 2015, 5. doi: 10.1002/aenm.201500213  doi: 10.1002/aenm.201500213

    2. [2]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nature Chemistry 2014, 6, 242. doi: 10.1038/nchem.1861  doi: 10.1038/nchem.1861

    3. [3]

      Bath, U.; Luo, D.; Comte, P.; Moser, J. E.; Weissoertel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395, 583. doi: 10.1038/26936  doi: 10.1038/26936

    4. [4]

      Burschka, J.; Dualeh, A.; Kellser, F.; Baranoff, E.; Cevey-Ha, N.; Yi, C.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2011, 133, 18042. doi: 10.1021/ja207367t  doi: 10.1021/ja207367t

    5. [5]

      Yang, Y. K.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011. doi: 10.1021/jacs.6b09110  doi: 10.1021/jacs.6b09110

    6. [6]

      Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; Chen, Y. J. Am. Chem. Soc. 2017, 139, 4929. doi: 10.1021/jacs.7b01170  doi: 10.1021/jacs.7b01170

    7. [7]

      Cui, Y.; Yao, H.; Gao, B.; Qin, Y.; Zhang, S.; Yang, B.; He, C.; Xu, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7302. doi: 10.1021/jacs.7b01493  doi: 10.1021/jacs.7b01493

    8. [8]

      Zhao, F. W.; Dai, S. X.; Wu, Y.; Zhang, Q.; Wang, J.; Jiang, L.; Ling, Q.; Wei, Z.; Ma, W.; You, W.; et al. Adv. Mater. 2017, 29, 1700144. doi: 10.1002/adma.201700144  doi: 10.1002/adma.201700144

    9. [9]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    10. [10]

      Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272  doi: 10.1126/science.aaa9272

    11. [11]

      Krishna, A.; Grimsdale, A. C. J. Mater. Chem. A 2017, 5, 16446. doi: 10.1039/c7ta01258f  doi: 10.1039/c7ta01258f

    12. [12]

      Meng, L.; You, J. B.; Guo, T.; Yang, Y. Acc. Chem. Res. 2016, 49, 155. doi: 10.1021/acs.accounts.5b00404  doi: 10.1021/acs.accounts.5b00404

    13. [13]

      Chen, W.; Wu, Y. Z. Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; et al. Science 2015, 350, 944. doi: 10.1126/science.aad1015  doi: 10.1126/science.aad1015

    14. [14]

      Jung, M.; Kim, Y. C. Jeon, N. J.; Yang, W. S.; Seo, J.; Noh, J. H.; Seok, S. ChemSusChem 2016, 9, 2592. doi: 10.1002/cssc.201600957  doi: 10.1002/cssc.201600957

    15. [15]

      Ke, W. J.; Zhao, D. W.; Grice, C. R.; Cimaroli, A. J.; Fang, G. J.; Yan, Y. F. J. Mater. Chem. A 2015, 3, 23888. doi: 10.1039/c5ta07829f  doi: 10.1039/c5ta07829f

    16. [16]

      Clarkson, R. G.; Gomberg, M. J. Am. Chem. Soc. 1930, 52, 2881. doi: 10.1021/ja01370a048  doi: 10.1021/ja01370a048

    17. [17]

      Agarwala, P.; Kabra, D. J. Mater. Chem. A 2017, 5, 1348. doi: 10.1039/c6ta08449d  doi: 10.1039/c6ta08449d

    18. [18]

      Bi, D.; Yi, C.; Luo, J.; Décoppet, J.; Zhang, F.; Zakeeruddin1, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Nat. Energy 2016, 1, 16142. doi: 10.1038/nenergy.2016.142  doi: 10.1038/nenergy.2016.142

    19. [19]

      Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. J. Am. Chem. Soc. 2014, 136, 7837. doi: 10.1021/ja502824c  doi: 10.1021/ja502824c

    20. [20]

      Hu, Z.; Fu, W. F.; Yan, L.; Miao, J.; Yu, H.; He, Y.; Goto, O.; Meng, H.; Chen, H.; Huang, W. Chem. Sci. 2016, 7, 5007. doi: 10.1039/c6sc00973e  doi: 10.1039/c6sc00973e

    21. [21]

      Ganesan, P.; Fu, K. W.; Gao, P.; Raabe, I.; Schenk, K.; Scopelliti, R.; Luo, J.; Wong, L. H.; Grätzel, M.; Nazeeruddin, M. K. Energ. Environ. Sci. 2015, 8, 1986. doi: 10.1039/c4ee03773a  doi: 10.1039/c4ee03773a

    22. [22]

      Franckevicius, M.; Mishra, A. Kreuzer, F.; Luo, J.; Zakeeruddin, S. M.; Grätzel, M. Mater. Horiz. 2015, 2, 613. doi: 10.1039/C5MH00154D  doi: 10.1039/C5MH00154D

    23. [23]

      Rakstys, K.; Paek, S.; Sohail, M.; Gao, P.; Cho, K. T.; Gratia, P.; Lee, Y.; Dahmen, K. H.; Nazeeruddin, M. K. J. Mater. Chem. A 2016, 4, 18259. doi: 10.1039/c6ta09028a  doi: 10.1039/c6ta09028a

    24. [24]

      Li, M. H.; Hsu, C. W.; Shen, P.; Cheng, H.; Chi, Y.; Chen, P.; Guo, T. F. Chem. Commun. 2015, 51, 15518. doi: 10.1039/c5cc04405g  doi: 10.1039/c5cc04405g

    25. [25]

      Xu, B.; Bi, D. Q.; Hua, Y.; Liu, P.; Cheng, M.; Grätzel, M.; Kloo, L.; Hagfeldt, A.; Sun, L. Energy Environ. Sci. 2016, 9, 873. doi: 10.1039/c6ee00056h  doi: 10.1039/c6ee00056h

    26. [26]

      Bi, D. Q.; Xu, B.; Gao, P.; Sun, L.; Grätzel, M.; Hagfeldt, A. Nano Energy 2016, 23, 138. doi: 10.1016/j.nanoen.2016.03.020  doi: 10.1016/j.nanoen.2016.03.020

    27. [27]

      Xu, B.; Zhu, Z. L.; Zhang, J.; Liu, H.; Chueh, C. C.; Li, X.; Jen, A. K. Y. Adv. Energy Mater. 2017, 7, 10. doi: 10.1002/aenm.201700683  doi: 10.1002/aenm.201700683

    28. [28]

      Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J. P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K. H.; et al. Nat. Energy 2016, 1, 7. doi: 10.1038/nenergy.2015.17  doi: 10.1038/nenergy.2015.17

    29. [29]

      Krishnamoorthy, T.; Kunwu, F.; Boix, P. P.; Li, H.; Koh, T. M.; Leong, W. L.; Powar, S.; Grimsdale, A.; Grätzel, M.; Mathews, N.; et al. J. Mater. Chem. A 2014, 2, 6305. doi: 10.1039/c4ta00486h  doi: 10.1039/c4ta00486h

    30. [30]

      Li, H. R.; Fu, K. W.; Boix, P. P.; Wong, L. H.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. ChemSusChem 2014, 7, 3420. doi: 10.1002/cssc.201402587  doi: 10.1002/cssc.201402587

    31. [31]

      Shi, Y. T.; Hou, K. L.; Wang, Y.; Wang, K.; Ren, H.; Pang, M.; Chen, F.; Zhang, S. J. Mater. Chem. A 2016, 4, 5415. doi: 10.1039/c6ta00976j  doi: 10.1039/c6ta00976j

    32. [32]

      Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. J. Am. Chem. Soc 2013, 135, 19087. doi: 10.1021/ja410659k  doi: 10.1021/ja410659k

    33. [33]

      Rakstys, K.; Abate, A.; Dar, M. I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad S.; Grätzel, M.; et al. J. Am. Chem. Soc. 2015, 137, 16172. doi: 10.1021/jacs.5b11076  doi: 10.1021/jacs.5b11076

    34. [34]

      Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656. doi: 10.1021/jacs.5b11008  doi: 10.1021/jacs.5b11008

    35. [35]

      Do, K.; Choi, H.; Lim, K.; Jo, H.; Cho, J. W.; Nazeeruddin, M. K.; Ko, J. Chem. Commun. 2014, 50, 10971. doi: 10.1039/C4CC04550E  doi: 10.1039/C4CC04550E

    36. [36]

      Liu, X. P.; Kong, F. T.; Jin, S.; Chen, W.; Yu, T.; Hayat, T.; Alsaedi, A.; Wang. H.; Tan, Z.; Chen, J.; et al. ACS Appl. Mat. Interfaces 2017, 9, 27657. doi: 10.1021/acsami.7b06193  doi: 10.1021/acsami.7b06193

    37. [37]

      Xue, Y. Y.; Wu, Y.; Li, Y. J. Power Sources 2017, 344, 160. doi: 10.1016/j.jpowsour.2017.01.121  doi: 10.1016/j.jpowsour.2017.01.121

    38. [38]

      Zimmermann, I.; Urieta-Mora, J.; Gratia, P. Arago, J.; Grancini, G.; Molina-Ontoria, A.; Orti, E.; Martín, N.; Nazeeruddin, M. K. Adv. Energy Mater. 2017, 7, 8. doi: 10.1002/aenm.201601674  doi: 10.1002/aenm.201601674

    39. [39]

      Garcia-Benito, I.; Zimmermann, I.; Urieta-Mora, J.; Aragó, J.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K. J. Mater. Chem. A 2017, 5, 8317. doi: 10.1039/c7ta00997f  doi: 10.1039/c7ta00997f

    40. [40]

      Chen, Z. L.; Li, H.; Zheng, X.; Zhang, Q.; Li, Z.; Hao, Y.; Fang, G. ChemSusChem 2017, 10, 3111. doi: 10.1002/cssc.201700678  doi: 10.1002/cssc.201700678

    41. [41]

      Yin, X. X.; Guan, L.; Yu, J.; Zhao, D.; Wang, C.; Shrestha, N.; Han, Y.; An, Q.; Zhou, J.; Zhou, B.; et al. Nano Energy 2017, 40, 163. doi: 10.1016/j.nanoen.2017.08.016  doi: 10.1016/j.nanoen.2017.08.016

    42. [42]

      Xu, B.; Sheibani, E.; Liu, P.; Zhang, J.; Tian, H.; Vlachopoulos, N.; Boschloo, G.; Kloo, L.; Hagfeldt, A.; Sun, L. Adv. Mater. 2014, 26, 6629. doi: 10.1002/adma.201402415  doi: 10.1002/adma.201402415

    43. [43]

      Wu, F.; Shan, Y. H.; Qiao, J.; Zhong, C.; Wang, R.; Song, Q.; Zhu, L. ChemSusChem 2017, 10, 3833. doi: 10.1002/cssc.201700973  doi: 10.1002/cssc.201700973

    44. [44]

      Wu, F.; Ji, Y.; Zhong, C.; Liu, Y.; Tan, L.; Zhu, L. Chem. Commun. 2017, 53, 8719. doi: 10.1039/c7cc04606e  doi: 10.1039/c7cc04606e

    45. [45]

      Sung, S. D.; Kang, M. S.; Choi, I. T.; Kim, H. M.; Kim, H.; Hong, M.; Kim, H. K.; Lee, W. I. Chem. Commun. 2014, 50, 14161. doi: 10.1039/C4CC06716A  doi: 10.1039/C4CC06716A

    46. [46]

      Lu, C. Y.; Choi, I. T.; Kim, J.; Kim, H. K. J. Mater. Chem. A 2017, 5, 20263. doi: 10.1039/c7ta04762b  doi: 10.1039/c7ta04762b

    47. [47]

      Gratia, P.; Magomedov, A.; Malinauskas, T.; Daskeviciene, M.; Abate, A.; Ahmad, S.; Grätzel, Getautis, V.; Nazeeruddin, M. K. Angew. Chem. Int. Ed. 2015, 54, 11409. doi: 10.1002/anie.201504666  doi: 10.1002/anie.201504666

    48. [48]

      Malinauskas, T.; Saliba, M.; Matsui, T.; Daskeviciene, M.; Urnikaite, S.; Gratia, P.; Send, R.; Wonneberger, H.; Bruder, I.; Graetzel, M.; et al. Energ. Environ. Sci. 2016, 9, 1681. doi: 10.1039/c5ee03911h  doi: 10.1039/c5ee03911h

    49. [49]

      Cho, K. T.; Trukhina, O.; Roldán-Carmona, C.; Ince, M.; Gratia, P.; Grancini, G.; Gao, P.; Marszalek, T.; Pisula, W.; Reddy, P. Y. et al. Adv. Energy Mater. 2017, 7, 7. doi: 10.1002/aenm.201601733  doi: 10.1002/aenm.201601733

    50. [50]

      Chen, S.; Liu, P.; Hua, Y.; Li, Y.; Kloo, L.; Wang, X.; Ong, B. S.; Wong, W. K.; Zhu, X. ACS Appl. Mat. Interfaces 2017, 9, 13231. doi: 10.1021/acsami.7b01904  doi: 10.1021/acsami.7b01904

    51. [51]

      Kim, Y. C.; Yang, T. Y.; Jeon, N. J.; Jang, S.; Shin, T. J.; Shin, H. W.; Kim, S.; Lee, S.; Kim, S.; Noh, J. H.; et al. Energ. Environ. Sci. 2017, 10, 2109. doi: 10.1039/c7ee01931a  doi: 10.1039/c7ee01931a

    52. [52]

      Cabau, L.; Garcia-Benito, I.; Molina-Ontoria, A.; Montcada, N. F.; Martin, N.; Vidal-Ferrana, A.; Palomares, E. Chem. Commun. 2015, 51, 13980. doi: 10.1039/C5CC05236J  doi: 10.1039/C5CC05236J

    53. [53]

      Krishna, A.; Sabba, D. Li, H.; Yin, J.; Boix, P. P.; Soci, C.; Mhaisalkar, C. G.; Grimsdale A. C. Chem. Sci. 2014, 5, 2702. doi: 10.1039/C4SC00814F  doi: 10.1039/C4SC00814F

    54. [54]

      Park, S. M.; Heo, J. H.; Yun, J. H.; Jung, T. S.; Kwak, K.; Ko, M. J.; Cheon, C. H.; Kim, J. Y.; Im, S. H.; Son, H. J. Chem. Sci. 2016, 7, 5517. doi: 10.1039/c6sc00876c  doi: 10.1039/c6sc00876c

    55. [55]

      Choi, H.; Park, S. Y.; Paek, S.; Ekanayake, P.; Nazeeruddinc, M. K.; Ko, J. J. Mater. Chem. A 2014, 2, 19136. doi: 10.1039/c4ta04179h  doi: 10.1039/c4ta04179h

    56. [56]

      Choi, H.; Paek, S.; Lim, N.; Lee, Y. H.; Nazeeruddin, M. K.; Ko, J. Chem. Eur. J. 2014, 20, 10894. doi: 10.1002/chem.201403807  doi: 10.1002/chem.201403807

    57. [57]

      Choi, H.; Cho, J. W.; Kangc, M. S.; Ko, J. Chem. Commun. 2015, 51, 9305. doi: 10.1039/C5CC01471A  doi: 10.1039/C5CC01471A

    58. [58]

      Qin, P.; Paek, S.; Dar, M. I.; Pellet, N.; Ko, J.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2014, 136, 8516. doi: 10.1021/ja503272q  doi: 10.1021/ja503272q

    59. [59]

      Paek, S.; Qin, P. Lee, Y.; Cho, K. T.; Gao, P.; Grancini, G.; Oveisi, E.; Gratia, P.; Rakstys, K.; Al-Muhtaseb, S. A.; et al. Adv. Mater. 2017, 29, 7. doi: 10.1002/adma.201606555  doi: 10.1002/adma.201606555

    60. [60]

      Li, H. R.; Fu, K. W.; Hagfeldt, A.; Grtzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. Angew. Chem. Int. Ed. 2014, 53, 4085. doi: 10.1002/anie.201310877  doi: 10.1002/anie.201310877

    61. [61]

      Petrus, M. L.; Bein, T.; Dingemans, T. J.; Docampo, P. J. Mater. Chem. A 2015, 3, 12159. doi: 10.1039/c5ta03046c  doi: 10.1039/c5ta03046c

    62. [62]

      Abate, A.; Paek, S. Giordano, F.; Correa-Baena, J. P.; Saliba, M.; Gao, P.; Matsui, T.; Ko, J.; Zakeeruddin, S. M.; Dahmen, K. H.; et al. Energ. Environ. Sci. 2015, 8, 2946. doi: 10.1039/c5ee02014j  doi: 10.1039/c5ee02014j

    63. [63]

      Krishna, A.; Sabba, D.; Yin, J.; Bruno, A.; Boix, P. P.; Gao, Y.; Dewi, H. A.; Gurzadyan, G. G.; Soci, C.; Mhaisalkar, S. G.; et al. Chem.-Eur. J. 2015, 21, 15113. doi: 10.1002/chem.201503099  doi: 10.1002/chem.201503099

    64. [64]

      Carli, S.; Baena, J. P. C.; Marianetti, G.; Marchetti, N.; Lessi, M.; Abate, A.; Caramori, S.; Grätzel, M.; Bellina, F.; Bignozzi, C. A.; et al. ChemSusChem 2016, 9, 657. doi: 10.1002/cssc.201501665  doi: 10.1002/cssc.201501665

    65. [65]

      Zhang, F.; Liu, X. C.; Yi, C.; Bi, D.; Luo, J.; Wang, S.; Li, X.; Xiao, Y.; Zakeeruddin, S. M.; Grätzel, M. ChemSusChem 2016, 9, 1. doi: 10.1002/cssc.201600905  doi: 10.1002/cssc.201600905

    66. [66]

      Zhang, J.; Xu, L. J.; Huang, P.; Zhou, Y.; Zhu, Y. Y.; Yuan, N. Y.; Ding, J. N.; Zhang, Z. G.; Li, Y. F. J. Mater. Chem. C 2017, 5, 12752. doi: 10.1039/c7tc03683c  doi: 10.1039/c7tc03683c

    67. [67]

      Xu, L. J.; Huang, P.; Zhang, J.; Jia, X.; Ma, Z.; Sun, Y.; Zhou, Y.; Yuan, N. Y.; Ding, J. N. J. Phys. Chem. C 2017, 121, 21821. doi: 10.1021/acs.jpcc.7b04469  doi: 10.1021/acs.jpcc.7b04469

    68. [68]

      Bi, D. Q.; Mishra, A.; Gao, P.; Franckevicˇius, M.; Steck, C.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Buerle, P.; Grätzel, M.; Hagfeldt, A. ChemSusChem 2016, 9, 433. doi: 10.1002/cssc.201501510  doi: 10.1002/cssc.201501510

    69. [69]

      Qin, P.; Kast, H.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Mishra, A.; Bauerle, P.; Grätzel, M. Energy Environ. Sci. 2014, 7, 2981. doi: 10.1039/c4ee01220h  doi: 10.1039/c4ee01220h

    70. [70]

      Zheng, L.; Chung, Y. H.; Ma, Y.; Zhang, L.; Xiao, L.; Chen, Z.; Wang, S.; Quab, B.; Gong, Q. Chem. Commun. 2014, 50, 11196. doi: 10.1039/c4cc04680c  doi: 10.1039/c4cc04680c

    71. [71]

      Cheng, M.; Xu, B.; Chen, C.; Yang, X.; Zhang, F.; Tan, Q.; Hua, Y.; Kloo, L.; Sun, L. Adv. Energy. Mater. 2015, 5, 1401720. doi: 10.1002/aenm.201401720  doi: 10.1002/aenm.201401720

    72. [72]

      Liu, Y. S.; Hong, Z. R.; Chen, Q.; Chen, H.; Chang, W. H.; Yang, Y.; Song, T. B.; Yang, Y. Adv. Mater. 2016, 28, 440. doi: 10.1002/adma.201504293  doi: 10.1002/adma.201504293

    73. [73]

      Yun, J. H.; Park, S.; Heo, J. H.; Lee, H. S.; Yoon, S.; Kang, J.; Im, S. H.; Kim, H.; Lee, W.; Kim, B.; et al. Chem. Sci. 2016, 7, 6649. doi: 10.1039/c6sc02448c  doi: 10.1039/c6sc02448c

    74. [74]

      Cho, I.; Jeon, N. J.; Kwon, O. K.; Kim, D. W.; Jung, E. H.; Noh, J. H.; Seo, J.; Seok, S.; Park, S. Y. Chem. Sci. 2017, 8, 734. doi: 10.1039/c6sc02832b  doi: 10.1039/c6sc02832b

    75. [75]

      Zhang, J. B.; Xu, B.; Yang, L.; Ruan, C.; Wang, L.; Liu, P.; Zhang, W.; Vlachopoulos, N.; Kloo, L.; Boschloo, G.; et al. Adv. Energy Mater. 2018, 8, 12. doi: 10.1002/aenm.201701209  doi: 10.1002/aenm.201701209

    76. [76]

      Lv, S.; Song, Y.; Xiao, J.; Zhu, L.; Shi, J.; Wei, H.; Xu, Y.; Dong, J.; Xu, X.; Wang, S.; et al. Electrochim. Acta 2015, 182, 733. doi: 10.1016/j.electacta.2015.09.165  doi: 10.1016/j.electacta.2015.09.165

    77. [77]

      Song, Y. K.; Lv, S. T.; Liu, X.; Li, X.; Wang, S.; Wei, H.; Li, D.; Xiao, Y.; Meng, Q. Chem. Commun. 2014, 50, 15239. doi: 10.1039/c4cc06493c  doi: 10.1039/c4cc06493c

    78. [78]

      Wang, H.; Sheikh, A. D.; Feng, Q.; Li, F.; Chen, Y.; Yu, W.; Alarousu, E.; Ma, C.; Haque, M. A.; Shi, D.; et al. ACS Photonics 2015, 2, 849. doi: 10.1021/acsphotonics.5b00283  doi: 10.1021/acsphotonics.5b00283

    79. [79]

      Kazim, S.; Ramos, F. J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Energ. Environ. Sci. 2015, 8, 1816. doi: 10.1039/c5ee00599j  doi: 10.1039/c5ee00599j

    80. [80]

      Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. Energy. Environ. Sci. 2014, 7, 2963. doi: 10.1039/C4EE01589D  doi: 10.1039/C4EE01589D

    81. [81]

      Li, M. Z.; Sasaki, S.; Sanehira, Y.; Miyasaka, T.; Tamiaki, H.; Ikeuchi, T.; Chen, G.; Wang, X. F. J. Photochem. Photobiol. A-Chem. 2018, 353, 639. doi:10.1016/j.jphotochem.2017.08.051  doi: 10.1016/j.jphotochem.2017.08.051

    82. [82]

      Li, M. Z.; Li, Y.; Sasaki, S.; Song, J.; Wang, C.; Tamiaki, H.; Tian, W.; Chen, G.; Miyasaka, T.; Wang, X. F. ChemSusChem 2016, 9, 2862. doi: 10.1002/cssc.201601069  doi: 10.1002/cssc.201601069

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    18. [18]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

Metrics
  • PDF Downloads(21)
  • Abstract views(870)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return