Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials
- Corresponding author: HE Youjun, heyoujun214@gmail.com MIN Jie, min.jie@whu.edu.cn
Citation: ZHANG Jing, HE Youjun, MIN Jie. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1221-1238. doi: 10.3866/PKU.WHXB201803231
Yu, Z.; Sun, L. C. Adv. Energy Mater. 2015, 5. doi: 10.1002/aenm.201500213
doi: 10.1002/aenm.201500213
Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Nature Chemistry 2014, 6, 242. doi: 10.1038/nchem.1861
doi: 10.1038/nchem.1861
Bath, U.; Luo, D.; Comte, P.; Moser, J. E.; Weissoertel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395, 583. doi: 10.1038/26936
doi: 10.1038/26936
Burschka, J.; Dualeh, A.; Kellser, F.; Baranoff, E.; Cevey-Ha, N.; Yi, C.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2011, 133, 18042. doi: 10.1021/ja207367t
doi: 10.1021/ja207367t
Yang, Y. K.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011. doi: 10.1021/jacs.6b09110
doi: 10.1021/jacs.6b09110
Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; Chen, Y. J. Am. Chem. Soc. 2017, 139, 4929. doi: 10.1021/jacs.7b01170
doi: 10.1021/jacs.7b01170
Cui, Y.; Yao, H.; Gao, B.; Qin, Y.; Zhang, S.; Yang, B.; He, C.; Xu, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7302. doi: 10.1021/jacs.7b01493
doi: 10.1021/jacs.7b01493
Zhao, F. W.; Dai, S. X.; Wu, Y.; Zhang, Q.; Wang, J.; Jiang, L.; Ling, Q.; Wei, Z.; Ma, W.; You, W.; et al. Adv. Mater. 2017, 29, 1700144. doi: 10.1002/adma.201700144
doi: 10.1002/adma.201700144
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r
doi: 10.1021/ja809598r
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Science 2015, 348, 1234. doi: 10.1126/science.aaa9272
doi: 10.1126/science.aaa9272
Krishna, A.; Grimsdale, A. C. J. Mater. Chem. A 2017, 5, 16446. doi: 10.1039/c7ta01258f
doi: 10.1039/c7ta01258f
Meng, L.; You, J. B.; Guo, T.; Yang, Y. Acc. Chem. Res. 2016, 49, 155. doi: 10.1021/acs.accounts.5b00404
doi: 10.1021/acs.accounts.5b00404
Chen, W.; Wu, Y. Z. Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; et al. Science 2015, 350, 944. doi: 10.1126/science.aad1015
doi: 10.1126/science.aad1015
Jung, M.; Kim, Y. C. Jeon, N. J.; Yang, W. S.; Seo, J.; Noh, J. H.; Seok, S. ChemSusChem 2016, 9, 2592. doi: 10.1002/cssc.201600957
doi: 10.1002/cssc.201600957
Ke, W. J.; Zhao, D. W.; Grice, C. R.; Cimaroli, A. J.; Fang, G. J.; Yan, Y. F. J. Mater. Chem. A 2015, 3, 23888. doi: 10.1039/c5ta07829f
doi: 10.1039/c5ta07829f
Clarkson, R. G.; Gomberg, M. J. Am. Chem. Soc. 1930, 52, 2881. doi: 10.1021/ja01370a048
doi: 10.1021/ja01370a048
Agarwala, P.; Kabra, D. J. Mater. Chem. A 2017, 5, 1348. doi: 10.1039/c6ta08449d
doi: 10.1039/c6ta08449d
Bi, D.; Yi, C.; Luo, J.; Décoppet, J.; Zhang, F.; Zakeeruddin1, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Nat. Energy 2016, 1, 16142. doi: 10.1038/nenergy.2016.142
doi: 10.1038/nenergy.2016.142
Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. J. Am. Chem. Soc. 2014, 136, 7837. doi: 10.1021/ja502824c
doi: 10.1021/ja502824c
Hu, Z.; Fu, W. F.; Yan, L.; Miao, J.; Yu, H.; He, Y.; Goto, O.; Meng, H.; Chen, H.; Huang, W. Chem. Sci. 2016, 7, 5007. doi: 10.1039/c6sc00973e
doi: 10.1039/c6sc00973e
Ganesan, P.; Fu, K. W.; Gao, P.; Raabe, I.; Schenk, K.; Scopelliti, R.; Luo, J.; Wong, L. H.; Grätzel, M.; Nazeeruddin, M. K. Energ. Environ. Sci. 2015, 8, 1986. doi: 10.1039/c4ee03773a
doi: 10.1039/c4ee03773a
Franckevicius, M.; Mishra, A. Kreuzer, F.; Luo, J.; Zakeeruddin, S. M.; Grätzel, M. Mater. Horiz. 2015, 2, 613. doi: 10.1039/C5MH00154D
doi: 10.1039/C5MH00154D
Rakstys, K.; Paek, S.; Sohail, M.; Gao, P.; Cho, K. T.; Gratia, P.; Lee, Y.; Dahmen, K. H.; Nazeeruddin, M. K. J. Mater. Chem. A 2016, 4, 18259. doi: 10.1039/c6ta09028a
doi: 10.1039/c6ta09028a
Li, M. H.; Hsu, C. W.; Shen, P.; Cheng, H.; Chi, Y.; Chen, P.; Guo, T. F. Chem. Commun. 2015, 51, 15518. doi: 10.1039/c5cc04405g
doi: 10.1039/c5cc04405g
Xu, B.; Bi, D. Q.; Hua, Y.; Liu, P.; Cheng, M.; Grätzel, M.; Kloo, L.; Hagfeldt, A.; Sun, L. Energy Environ. Sci. 2016, 9, 873. doi: 10.1039/c6ee00056h
doi: 10.1039/c6ee00056h
Bi, D. Q.; Xu, B.; Gao, P.; Sun, L.; Grätzel, M.; Hagfeldt, A. Nano Energy 2016, 23, 138. doi: 10.1016/j.nanoen.2016.03.020
doi: 10.1016/j.nanoen.2016.03.020
Xu, B.; Zhu, Z. L.; Zhang, J.; Liu, H.; Chueh, C. C.; Li, X.; Jen, A. K. Y. Adv. Energy Mater. 2017, 7, 10. doi: 10.1002/aenm.201700683
doi: 10.1002/aenm.201700683
Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J. P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K. H.; et al. Nat. Energy 2016, 1, 7. doi: 10.1038/nenergy.2015.17
doi: 10.1038/nenergy.2015.17
Krishnamoorthy, T.; Kunwu, F.; Boix, P. P.; Li, H.; Koh, T. M.; Leong, W. L.; Powar, S.; Grimsdale, A.; Grätzel, M.; Mathews, N.; et al. J. Mater. Chem. A 2014, 2, 6305. doi: 10.1039/c4ta00486h
doi: 10.1039/c4ta00486h
Li, H. R.; Fu, K. W.; Boix, P. P.; Wong, L. H.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. ChemSusChem 2014, 7, 3420. doi: 10.1002/cssc.201402587
doi: 10.1002/cssc.201402587
Shi, Y. T.; Hou, K. L.; Wang, Y.; Wang, K.; Ren, H.; Pang, M.; Chen, F.; Zhang, S. J. Mater. Chem. A 2016, 4, 5415. doi: 10.1039/c6ta00976j
doi: 10.1039/c6ta00976j
Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. J. Am. Chem. Soc 2013, 135, 19087. doi: 10.1021/ja410659k
doi: 10.1021/ja410659k
Rakstys, K.; Abate, A.; Dar, M. I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad S.; Grätzel, M.; et al. J. Am. Chem. Soc. 2015, 137, 16172. doi: 10.1021/jacs.5b11076
doi: 10.1021/jacs.5b11076
Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656. doi: 10.1021/jacs.5b11008
doi: 10.1021/jacs.5b11008
Do, K.; Choi, H.; Lim, K.; Jo, H.; Cho, J. W.; Nazeeruddin, M. K.; Ko, J. Chem. Commun. 2014, 50, 10971. doi: 10.1039/C4CC04550E
doi: 10.1039/C4CC04550E
Liu, X. P.; Kong, F. T.; Jin, S.; Chen, W.; Yu, T.; Hayat, T.; Alsaedi, A.; Wang. H.; Tan, Z.; Chen, J.; et al. ACS Appl. Mat. Interfaces 2017, 9, 27657. doi: 10.1021/acsami.7b06193
doi: 10.1021/acsami.7b06193
Xue, Y. Y.; Wu, Y.; Li, Y. J. Power Sources 2017, 344, 160. doi: 10.1016/j.jpowsour.2017.01.121
doi: 10.1016/j.jpowsour.2017.01.121
Zimmermann, I.; Urieta-Mora, J.; Gratia, P. Arago, J.; Grancini, G.; Molina-Ontoria, A.; Orti, E.; Martín, N.; Nazeeruddin, M. K. Adv. Energy Mater. 2017, 7, 8. doi: 10.1002/aenm.201601674
doi: 10.1002/aenm.201601674
Garcia-Benito, I.; Zimmermann, I.; Urieta-Mora, J.; Aragó, J.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K. J. Mater. Chem. A 2017, 5, 8317. doi: 10.1039/c7ta00997f
doi: 10.1039/c7ta00997f
Chen, Z. L.; Li, H.; Zheng, X.; Zhang, Q.; Li, Z.; Hao, Y.; Fang, G. ChemSusChem 2017, 10, 3111. doi: 10.1002/cssc.201700678
doi: 10.1002/cssc.201700678
Yin, X. X.; Guan, L.; Yu, J.; Zhao, D.; Wang, C.; Shrestha, N.; Han, Y.; An, Q.; Zhou, J.; Zhou, B.; et al. Nano Energy 2017, 40, 163. doi: 10.1016/j.nanoen.2017.08.016
doi: 10.1016/j.nanoen.2017.08.016
Xu, B.; Sheibani, E.; Liu, P.; Zhang, J.; Tian, H.; Vlachopoulos, N.; Boschloo, G.; Kloo, L.; Hagfeldt, A.; Sun, L. Adv. Mater. 2014, 26, 6629. doi: 10.1002/adma.201402415
doi: 10.1002/adma.201402415
Wu, F.; Shan, Y. H.; Qiao, J.; Zhong, C.; Wang, R.; Song, Q.; Zhu, L. ChemSusChem 2017, 10, 3833. doi: 10.1002/cssc.201700973
doi: 10.1002/cssc.201700973
Wu, F.; Ji, Y.; Zhong, C.; Liu, Y.; Tan, L.; Zhu, L. Chem. Commun. 2017, 53, 8719. doi: 10.1039/c7cc04606e
doi: 10.1039/c7cc04606e
Sung, S. D.; Kang, M. S.; Choi, I. T.; Kim, H. M.; Kim, H.; Hong, M.; Kim, H. K.; Lee, W. I. Chem. Commun. 2014, 50, 14161. doi: 10.1039/C4CC06716A
doi: 10.1039/C4CC06716A
Lu, C. Y.; Choi, I. T.; Kim, J.; Kim, H. K. J. Mater. Chem. A 2017, 5, 20263. doi: 10.1039/c7ta04762b
doi: 10.1039/c7ta04762b
Gratia, P.; Magomedov, A.; Malinauskas, T.; Daskeviciene, M.; Abate, A.; Ahmad, S.; Grätzel, Getautis, V.; Nazeeruddin, M. K. Angew. Chem. Int. Ed. 2015, 54, 11409. doi: 10.1002/anie.201504666
doi: 10.1002/anie.201504666
Malinauskas, T.; Saliba, M.; Matsui, T.; Daskeviciene, M.; Urnikaite, S.; Gratia, P.; Send, R.; Wonneberger, H.; Bruder, I.; Graetzel, M.; et al. Energ. Environ. Sci. 2016, 9, 1681. doi: 10.1039/c5ee03911h
doi: 10.1039/c5ee03911h
Cho, K. T.; Trukhina, O.; Roldán-Carmona, C.; Ince, M.; Gratia, P.; Grancini, G.; Gao, P.; Marszalek, T.; Pisula, W.; Reddy, P. Y. et al. Adv. Energy Mater. 2017, 7, 7. doi: 10.1002/aenm.201601733
doi: 10.1002/aenm.201601733
Chen, S.; Liu, P.; Hua, Y.; Li, Y.; Kloo, L.; Wang, X.; Ong, B. S.; Wong, W. K.; Zhu, X. ACS Appl. Mat. Interfaces 2017, 9, 13231. doi: 10.1021/acsami.7b01904
doi: 10.1021/acsami.7b01904
Kim, Y. C.; Yang, T. Y.; Jeon, N. J.; Jang, S.; Shin, T. J.; Shin, H. W.; Kim, S.; Lee, S.; Kim, S.; Noh, J. H.; et al. Energ. Environ. Sci. 2017, 10, 2109. doi: 10.1039/c7ee01931a
doi: 10.1039/c7ee01931a
Cabau, L.; Garcia-Benito, I.; Molina-Ontoria, A.; Montcada, N. F.; Martin, N.; Vidal-Ferrana, A.; Palomares, E. Chem. Commun. 2015, 51, 13980. doi: 10.1039/C5CC05236J
doi: 10.1039/C5CC05236J
Krishna, A.; Sabba, D. Li, H.; Yin, J.; Boix, P. P.; Soci, C.; Mhaisalkar, C. G.; Grimsdale A. C. Chem. Sci. 2014, 5, 2702. doi: 10.1039/C4SC00814F
doi: 10.1039/C4SC00814F
Park, S. M.; Heo, J. H.; Yun, J. H.; Jung, T. S.; Kwak, K.; Ko, M. J.; Cheon, C. H.; Kim, J. Y.; Im, S. H.; Son, H. J. Chem. Sci. 2016, 7, 5517. doi: 10.1039/c6sc00876c
doi: 10.1039/c6sc00876c
Choi, H.; Park, S. Y.; Paek, S.; Ekanayake, P.; Nazeeruddinc, M. K.; Ko, J. J. Mater. Chem. A 2014, 2, 19136. doi: 10.1039/c4ta04179h
doi: 10.1039/c4ta04179h
Choi, H.; Paek, S.; Lim, N.; Lee, Y. H.; Nazeeruddin, M. K.; Ko, J. Chem. Eur. J. 2014, 20, 10894. doi: 10.1002/chem.201403807
doi: 10.1002/chem.201403807
Choi, H.; Cho, J. W.; Kangc, M. S.; Ko, J. Chem. Commun. 2015, 51, 9305. doi: 10.1039/C5CC01471A
doi: 10.1039/C5CC01471A
Qin, P.; Paek, S.; Dar, M. I.; Pellet, N.; Ko, J.; Grätzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2014, 136, 8516. doi: 10.1021/ja503272q
doi: 10.1021/ja503272q
Paek, S.; Qin, P. Lee, Y.; Cho, K. T.; Gao, P.; Grancini, G.; Oveisi, E.; Gratia, P.; Rakstys, K.; Al-Muhtaseb, S. A.; et al. Adv. Mater. 2017, 29, 7. doi: 10.1002/adma.201606555
doi: 10.1002/adma.201606555
Li, H. R.; Fu, K. W.; Hagfeldt, A.; Grtzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. Angew. Chem. Int. Ed. 2014, 53, 4085. doi: 10.1002/anie.201310877
doi: 10.1002/anie.201310877
Petrus, M. L.; Bein, T.; Dingemans, T. J.; Docampo, P. J. Mater. Chem. A 2015, 3, 12159. doi: 10.1039/c5ta03046c
doi: 10.1039/c5ta03046c
Abate, A.; Paek, S. Giordano, F.; Correa-Baena, J. P.; Saliba, M.; Gao, P.; Matsui, T.; Ko, J.; Zakeeruddin, S. M.; Dahmen, K. H.; et al. Energ. Environ. Sci. 2015, 8, 2946. doi: 10.1039/c5ee02014j
doi: 10.1039/c5ee02014j
Krishna, A.; Sabba, D.; Yin, J.; Bruno, A.; Boix, P. P.; Gao, Y.; Dewi, H. A.; Gurzadyan, G. G.; Soci, C.; Mhaisalkar, S. G.; et al. Chem.-Eur. J. 2015, 21, 15113. doi: 10.1002/chem.201503099
doi: 10.1002/chem.201503099
Carli, S.; Baena, J. P. C.; Marianetti, G.; Marchetti, N.; Lessi, M.; Abate, A.; Caramori, S.; Grätzel, M.; Bellina, F.; Bignozzi, C. A.; et al. ChemSusChem 2016, 9, 657. doi: 10.1002/cssc.201501665
doi: 10.1002/cssc.201501665
Zhang, F.; Liu, X. C.; Yi, C.; Bi, D.; Luo, J.; Wang, S.; Li, X.; Xiao, Y.; Zakeeruddin, S. M.; Grätzel, M. ChemSusChem 2016, 9, 1. doi: 10.1002/cssc.201600905
doi: 10.1002/cssc.201600905
Zhang, J.; Xu, L. J.; Huang, P.; Zhou, Y.; Zhu, Y. Y.; Yuan, N. Y.; Ding, J. N.; Zhang, Z. G.; Li, Y. F. J. Mater. Chem. C 2017, 5, 12752. doi: 10.1039/c7tc03683c
doi: 10.1039/c7tc03683c
Xu, L. J.; Huang, P.; Zhang, J.; Jia, X.; Ma, Z.; Sun, Y.; Zhou, Y.; Yuan, N. Y.; Ding, J. N. J. Phys. Chem. C 2017, 121, 21821. doi: 10.1021/acs.jpcc.7b04469
doi: 10.1021/acs.jpcc.7b04469
Bi, D. Q.; Mishra, A.; Gao, P.; Franckevicˇius, M.; Steck, C.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Buerle, P.; Grätzel, M.; Hagfeldt, A. ChemSusChem 2016, 9, 433. doi: 10.1002/cssc.201501510
doi: 10.1002/cssc.201501510
Qin, P.; Kast, H.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Mishra, A.; Bauerle, P.; Grätzel, M. Energy Environ. Sci. 2014, 7, 2981. doi: 10.1039/c4ee01220h
doi: 10.1039/c4ee01220h
Zheng, L.; Chung, Y. H.; Ma, Y.; Zhang, L.; Xiao, L.; Chen, Z.; Wang, S.; Quab, B.; Gong, Q. Chem. Commun. 2014, 50, 11196. doi: 10.1039/c4cc04680c
doi: 10.1039/c4cc04680c
Cheng, M.; Xu, B.; Chen, C.; Yang, X.; Zhang, F.; Tan, Q.; Hua, Y.; Kloo, L.; Sun, L. Adv. Energy. Mater. 2015, 5, 1401720. doi: 10.1002/aenm.201401720
doi: 10.1002/aenm.201401720
Liu, Y. S.; Hong, Z. R.; Chen, Q.; Chen, H.; Chang, W. H.; Yang, Y.; Song, T. B.; Yang, Y. Adv. Mater. 2016, 28, 440. doi: 10.1002/adma.201504293
doi: 10.1002/adma.201504293
Yun, J. H.; Park, S.; Heo, J. H.; Lee, H. S.; Yoon, S.; Kang, J.; Im, S. H.; Kim, H.; Lee, W.; Kim, B.; et al. Chem. Sci. 2016, 7, 6649. doi: 10.1039/c6sc02448c
doi: 10.1039/c6sc02448c
Cho, I.; Jeon, N. J.; Kwon, O. K.; Kim, D. W.; Jung, E. H.; Noh, J. H.; Seo, J.; Seok, S.; Park, S. Y. Chem. Sci. 2017, 8, 734. doi: 10.1039/c6sc02832b
doi: 10.1039/c6sc02832b
Zhang, J. B.; Xu, B.; Yang, L.; Ruan, C.; Wang, L.; Liu, P.; Zhang, W.; Vlachopoulos, N.; Kloo, L.; Boschloo, G.; et al. Adv. Energy Mater. 2018, 8, 12. doi: 10.1002/aenm.201701209
doi: 10.1002/aenm.201701209
Lv, S.; Song, Y.; Xiao, J.; Zhu, L.; Shi, J.; Wei, H.; Xu, Y.; Dong, J.; Xu, X.; Wang, S.; et al. Electrochim. Acta 2015, 182, 733. doi: 10.1016/j.electacta.2015.09.165
doi: 10.1016/j.electacta.2015.09.165
Song, Y. K.; Lv, S. T.; Liu, X.; Li, X.; Wang, S.; Wei, H.; Li, D.; Xiao, Y.; Meng, Q. Chem. Commun. 2014, 50, 15239. doi: 10.1039/c4cc06493c
doi: 10.1039/c4cc06493c
Wang, H.; Sheikh, A. D.; Feng, Q.; Li, F.; Chen, Y.; Yu, W.; Alarousu, E.; Ma, C.; Haque, M. A.; Shi, D.; et al. ACS Photonics 2015, 2, 849. doi: 10.1021/acsphotonics.5b00283
doi: 10.1021/acsphotonics.5b00283
Kazim, S.; Ramos, F. J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Energ. Environ. Sci. 2015, 8, 1816. doi: 10.1039/c5ee00599j
doi: 10.1039/c5ee00599j
Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. Energy. Environ. Sci. 2014, 7, 2963. doi: 10.1039/C4EE01589D
doi: 10.1039/C4EE01589D
Li, M. Z.; Sasaki, S.; Sanehira, Y.; Miyasaka, T.; Tamiaki, H.; Ikeuchi, T.; Chen, G.; Wang, X. F. J. Photochem. Photobiol. A-Chem. 2018, 353, 639. doi:10.1016/j.jphotochem.2017.08.051
doi: 10.1016/j.jphotochem.2017.08.051
Li, M. Z.; Li, Y.; Sasaki, S.; Song, J.; Wang, C.; Tamiaki, H.; Tian, W.; Chen, G.; Miyasaka, T.; Wang, X. F. ChemSusChem 2016, 9, 2862. doi: 10.1002/cssc.201601069
doi: 10.1002/cssc.201601069
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Lijun Huo , Mingcun Wang , Tianyi Zhao , Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009