Citation: YUAN Jun, LIU Ye, ZHU Can, SHEN Ping, WAN Meixiu, FENG Liuliu, ZOU Yingping. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1272-1278. doi: 10.3866/PKU.WHXB201803221 shu

Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells

  • Corresponding author: ZOU Yingping, yingpingzou@csu.edu.cn
  • Received Date: 22 February 2018
    Revised Date: 19 March 2018
    Accepted Date: 20 March 2018
    Available Online: 22 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51673205, 51173206) and the Science Fund for Distinguished Young Scholars of Hunan Province, China (2017JJ1029)the Science Fund for Distinguished Young Scholars of Hunan Province, China 2017JJ1029the National Natural Science Foundation of China 51173206the National Natural Science Foundation of China 51673205

  • Polymer solar cells (PSCs) with bulk heterojunction (BHJ) structures have seen rapid development in recent years. In comparison with their inorganic counterparts, PSCs have some advantages such as low cost, light weight, solution processability, and good mechanical flexibility. However, improvement of the power conversion efficiency (PCE) of PSCs is required for commercial applications. In order to achieve high-performance PSCs, active layers, including donor polymers and acceptors, are very important. Several design principles for conjugated donor polymers in PSCs have emerged, including optimization of the conjugated backbone, side-chains, and substituents. In the past few decades, various classes of electron-donating polymers have been reported for PSCs. Among them, quinoxaline (Qx) is a unique building block for the construction of different optoelectronic polymers because of its planar, rigid, and conjugated structure. Qx derivatives have proven interesting and have been widely employed in many fields. Qx-based conjugated polymers (or small molecules) can be easily modified to match with ball-like fullerene derivatives such as PCBM ([6, 6]-phenyl-C61 or C71-butyric acid methyl ester) or weak crystalline non-fullerene acceptors such as 2, 2'-[[6, 6, 12, 12-tetrakis(4-hexylphenyl)-6, 12, -dihydrodithieno[2, 3-d:2', 3'-d']-s-indaceno[1, 2-b:5, 6-b']dithiophene-2, 8-diyl]bis[methylidyne(3-oxo-1H-indene-2, 1(3H)-diylidene)]]bispropanedinitrile (ITIC). Herein, we synthesized a Qx-based polymer with asymmetric side-chains (TPQ-1). The molecular weight, optical properties, molecular energy levels, and mobilities of TPQ-1 were investigated. Furthermore, the blend morphologies and photovoltaic properties of TPQ-1 using a strong crystalline non-fullerene (NF) acceptor (o-IDTBR) were systematically explored. The photovoltaic performance of TPQ-1 and its symmetric side-chain counterpart, HFQx-T, was compared. The introduction of asymmetric side-chains led to a favorable phase separation when blended with o-IDTBR. As expected, the TPQ-1:o-IDTBR-based devices exhibited a high PCE of 8.6% after thermal annealing (TA). In contrast, the HFQx-T:o-IDTBR-based devices showed a moderate PCE of 5.7%, moreover, the PCE was decreased to 4.6% after TA treatment. More importantly, a low bandgap material, PTB7-Th, was specifically selected as a third component to mix with the TPQ-1:o-IDTBR blend to form highly-efficient ternary PSCs. At an optimal weight ratio (15%) of PTB7-Th addition, a PCE of 9.6% was achieved. In the systems that were investigated, TPQ-1 demonstrated significantly better photovoltaic properties than the HFQx-T-based devices. These results indicate that Qx-based polymers with asymmetric side chains have a bright future in photovoltaic devices.
  • 加载中
    1. [1]

      Li, Y. Acc. Chem. Res. 2012, 45, 723. doi: 10.1021/ar2002446  doi: 10.1021/ar2002446

    2. [2]

      Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev.2015, 115, 12666. doi: 10.1021/acs.chemrev.5b00098  doi: 10.1021/acs.chemrev.5b00098

    3. [3]

      Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. doi: 10.1038/nmat1500  doi: 10.1038/nmat1500

    4. [4]

      Zhou, H.; Yang, L.; You, W. Macromolecules 2012, 45, 607. doi: 10.1021/ma201648t  doi: 10.1021/ma201648t

    5. [5]

      Lai, Y. Y.; Cheng, Y. J.; Hsu, C. S. Energy Environ. Sci. 2014, 7, 1866. doi: 10.1039/C3EE43080D  doi: 10.1039/C3EE43080D

    6. [6]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324. doi: 10.1021/cr050149z  doi: 10.1021/cr050149z

    7. [7]

      Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sin. 2014, 72, 158. doi: 10.6023/A13111142  doi: 10.6023/A13111142

    8. [8]

      Xiao, Z.; Jia, X.; Ding, L. Sci. Bull. 2017, 62, 1562. doi: 10.1016/j.scib.2017.11.003  doi: 10.1016/j.scib.2017.11.003

    9. [9]

      Dou, C.; Liu, J.; Wang, L. Sci. China Chem. 2017, 60, 450. doi: 10.1007/s11426-016-0503-x  doi: 10.1007/s11426-016-0503-x

    10. [10]

      Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; et al. Nat. Commun. 2016, 7, 13740. doi: 10.1038/ncomms13740  doi: 10.1038/ncomms13740

    11. [11]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc.2017, 139, 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    12. [12]

      Wu, Q.; Zhao, D.; Schneider, A. M.; Chen, W.; Yu, L. J. Am. Chem. Soc. 2016, 138, 7248. doi: 10.1021/jacs.6b03562  doi: 10.1021/jacs.6b03562

    13. [13]

      Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; et al. J. Am. Chem. Soc. 2016, 138, 10184. doi: 10.1021/jacs.6b04368  doi: 10.1021/jacs.6b04368

    14. [14]

      Liu, Y.; Zhang, Z.; Feng, S.; Li, M.; Wu, L.; Hou, R.; Xu, X.; Chen, X.; Bo, Z. J. Am. Chem. Soc. 2017, 139, 3356. doi: 10.1021/jacs.7b00566  doi: 10.1021/jacs.7b00566

    15. [15]

      Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; et al. J. Am. Chem. Soc. 2016, 138, 4955. doi: 10.1021/jacs.6b02004  doi: 10.1021/jacs.6b02004

    16. [16]

      Li, Y.; Lin, J. D.; Che, X.; Qu, Y.; Liu, F.; Liao, L. S.; Forrest, S. R. J. Am. Chem. Soc. 2017, 139, 17114. doi: 10.1021/jacs.7b11278  doi: 10.1021/jacs.7b11278

    17. [17]

      Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; et al. J. Am. Chem. Soc. 2017, 139, 4929. doi: 10.1021/jacs.7b01170  doi: 10.1021/jacs.7b01170

    18. [18]

      Liu, Y.; Liu, J.; Zhang, L.; Fang, J.; Zhang, W.; Liu, Z. Chin. J. Org. Chem. 2014, 34, 1021. doi: 10.6023/cjoc201311041  doi: 10.6023/cjoc201311041

    19. [19]

      Ma, Y.; Zhang, M.; Tang, Y.; Ma, W.; Zheng, Q. Chem. Mater. 2017, 29, 9775. doi: 10.1021/acs.chemmater.7b03770  doi: 10.1021/acs.chemmater.7b03770

    20. [20]

      Park, G. E.; Choi, S.; Park, S. Y.; Lee, D. H.; Cho, M. J.; Choi, D. H. Adv. Energy Mater. 2017, 7, 1700566.doi: 10.1002/aenm.201700566  doi: 10.1002/aenm.201700566

    21. [21]

      Zhang, K.; Gao, K.; Xia, R.; Wu, Z.; Sun, C.; Cao, J.; Qian, L.; Li, W.; Liu, S.; Huang, F.; et al. Adv. Mater. 2016, 28, 4817. doi: 10.1002/adma.201506270  doi: 10.1002/adma.201506270

    22. [22]

      Zhang, G.; Yang, G.; Yan, H.; Kim, J. H.; Ade, H.; Wu, W.; Xu, X.; Duan, Y.; Peng, Q. Adv. Mater. 2017, 29, 1606054. doi: 10.1002/adma.201606054  doi: 10.1002/adma.201606054

    23. [23]

      Xu, S. J.; Zhou, Z.; Liu, W.; Zhang, Z.; Liu, F.; Yan, H.; Zhu, X. Adv. Mater. 2017, 29, 1704510. doi: 10.1002/adma.201704510  doi: 10.1002/adma.201704510

    24. [24]

      Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K.; Zhu, J.; Huo, L.; Bin, H.; et al. Adv. Mater. 2017, 29, 1604155. doi: 10.1002/adma.201604155  doi: 10.1002/adma.201604155

    25. [25]

      Cheng, P.; Wang, R.; Zhu, J.; Huang, W.; Chang, S. Y.; Meng, L.; Sun, P.; Cheng, H. W.; Qin, M.; Zhu, C.; et al. Adv. Mater. 2018, 30, 1705243. doi: 10.1002/adma.201705243  doi: 10.1002/adma.201705243

    26. [26]

      Fei, Z.; Eisner, F. D.; Jiao, X.; Azzouzi, M.; Rohr, J. A.; Han, Y.; Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.; et al. Adv. Mater. 2018, 30, 1705209. doi: 10.1002/adma.201705209  doi: 10.1002/adma.201705209

    27. [27]

      Huang, W.; Cheng, P.; Yang, Y. M.; Li, G.; Yang, Y. Adv. Mater. 2018, 30, 1705706. doi: 10.1002/adma.201705706  doi: 10.1002/adma.201705706

    28. [28]

      Liu, D.; Wang, J.; Gu, C.; Li, Y.; Bao, X.; Yang, R. Adv. Mater. 2018, 30, 1705870. doi: 10.1002/adma.201705870  doi: 10.1002/adma.201705870

    29. [29]

      Luo, Z.; Bin, H.; Liu, T.; Zhang, Z. G.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; et al. Adv. Mater. 2018, 30, 1706124. doi: 10.1002/adma.201706124  doi: 10.1002/adma.201706124

    30. [30]

      Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; et al. Adv. Mater. 2018, 30, 1704713. doi: 10.1002/adma.201704713  doi: 10.1002/adma.201704713

    31. [31]

      Qiu, B.; Xue, L.; Yang, Y.; Bin, H.; Zhang, Y.; Zhang, C.; Xiao, M.; Park, K.; Morrison, W.; Zhang, Z. G.; et al. Chem. Mater. 2017, 29, 7543. doi: 10.1021/acs.chemmater.7b02536  doi: 10.1021/acs.chemmater.7b02536

    32. [32]

      Feng, G.; Li, J.; Colberts, F. J. M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R. A. J.; Li, C.; et al. J. Am. Chem. Soc. 2017, 139, 18647. doi: 10.1021/jacs.7b10499  doi: 10.1021/jacs.7b10499

    33. [33]

      Yao, Z.; Liao, X.; Gao, K.; Lin, F.; Xu, X.; Shi, X.; Zuo, L.; Liu, F.; Chen, Y.; Jen, A. K. J. Am. Chem. Soc. 2018, 140, 2054. doi: 10.1021/jacs.7b13239  doi: 10.1021/jacs.7b13239

    34. [34]

      Fan, B.; Ying, L.; Wang, Z.; He, B.; Jiang, X. F.; Huang, F.; Cao, Y. Energy Environ. Sci. 2017, 10, 1243. doi: 10.1039/C7EE00619E  doi: 10.1039/C7EE00619E

    35. [35]

      Zhang, X.; Zhan, C.; Yao, J. Chem. Mater. 2015, 27, 166. doi: 10.1021/cm504140c  doi: 10.1021/cm504140c

    36. [36]

      Guo, B.; Li, W.; Guo, X.; Meng, X.; Ma, W.; Zhang, M.; Li, Y. Adv. Mater. 2017, 29, 1702291. doi: 10.1002/adma.201702291  doi: 10.1002/adma.201702291

    37. [37]

      Duan, Y.; Xu, X.; Yan, H.; Wu, W.; Li, Z.; Peng, Q. Adv. Mater. 2017, 29, 1605115. doi: 10.1002/adma.201605115  doi: 10.1002/adma.201605115

    38. [38]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    39. [39]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc., 2016, 138, 4657. doi: 10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    40. [40]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; et al. Nat. Commun. 2016, 7, 13651. doi: 10.1038/ncomms13651  doi: 10.1038/ncomms13651

    41. [41]

      Xue, L.; Yang, Y.; Xu, J.; Zhang, C.; Bin, H.; Zhang, Z. G.; Qiu, B.; Li, X.; Sun, C.; Gao, L.; et al. Adv. Mater. 2017, 29, 1703344. doi: 10.1002/adma.201703344  doi: 10.1002/adma.201703344

    42. [42]

      Yuan, J.; Qiu, L.; Zhang, Z.; Li, Y.; He, Y.; Jiang, L.; Zou, Y. Chem. Commun. 2016, 52, 6881. doi: 10.1039/C6CC01771A  doi: 10.1039/C6CC01771A

    43. [43]

      Yuan, J.; Qiu, L.; Zhang, Z. G.; Li, Y.; Chen, Y.; Zou, Y. Nano Energy 2016, 30, 312. doi: 10.1016/j.nanoen.2016.10.008  doi: 10.1016/j.nanoen.2016.10.008

    44. [44]

      Yuan, J.; Ouyang, J.; Cimrová, V.; Leclerc, M.; Najari, A.; Zou, Y. J. Mater. Chem. C 2017, 5, 1858. doi: 10.1039/C6TC05381E  doi: 10.1039/C6TC05381E

    45. [45]

      Gedefaw, D.; Prosa, M.; Bolognesi, M.; Seri, M.; Andersson, M. R. Adv. Energy Mater. 2017, 7, 1700575. doi: 10.1002/aenm.201700575  doi: 10.1002/aenm.201700575

    46. [46]

      Liu, M.; Gao, Y.; Zhang, Y.; Liu, Z.; Zhao, L. Polym. Chem. 2017, 8, 4613. doi: 10.1039/C7PY00850C  doi: 10.1039/C7PY00850C

    47. [47]

      Xu, S.; Feng, L.; Yuan, J.; Zhang, Z. G.; Li, Y.; Peng, H.; Zou, Y. ACS Appl. Mater. Interfaces 2017, 9, 18816. doi: 10.1021/acsami.7b03947  doi: 10.1021/acsami.7b03947

    48. [48]

      Zhang, Z.; Feng, L.; Xu, S.; Yuan, J.; Zhang, Z. G.; Peng, H.; Li, Y.; Zou, Y. J. Mater. Chem. A 2017, 5, 11286. doi: 10.1039/C7TA02486J  doi: 10.1039/C7TA02486J

    49. [49]

      Zhang, Z.; Feng, L.; Xu, S.; Liu, Y.; Peng, H.; Zhang, Z. G.; Li, Y.; Zou, Y. Adv. Sci. 2017, 4, 1700152. doi: 10.1002/advs.201700152  doi: 10.1002/advs.201700152

    50. [50]

      Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Rohr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Nat. Mater.2017, 16, 363. doi: 10.1038/nmat4797  doi: 10.1038/nmat4797

    51. [51]

      Jia, B.; Wu, Y.; Zhao, F.; Yan, C.; Zhu, S.; Cheng, P.; Mai, J.; Lau, T. K.; Lu, X.; Su, C. J.; et al. Sci. China Chem. 2017, 60, 257. doi: 10.1007/s11426-016-0336-6  doi: 10.1007/s11426-016-0336-6

    52. [52]

      Feng, S.; Zhang, C.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Adv. Mater. 2017, 29, 1703527. doi: 10.1002/adma.201703527  doi: 10.1002/adma.201703527

    53. [53]

      Kouijzer, S.; Michels, J. J.; van den Berg, M.; Gevaerts, V. S.; Turbiez, M.; Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 2013, 135, 12057. doi: 10.1021/ja405493j  doi: 10.1021/ja405493j

    54. [54]

      Li, Z.; Jiang, K.; Yang, G.; Lai, J. Y.; Ma, T.; Zhao, J.; Ma, W.; Yan, H. Nat. Commun. 2016, 7, 13094. doi: 10.1038/ncomms13094  doi: 10.1038/ncomms13094

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    11. [11]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    12. [12]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    19. [19]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(10)
  • Abstract views(838)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return