Citation: YUAN Jun, LIU Ye, ZHU Can, SHEN Ping, WAN Meixiu, FENG Liuliu, ZOU Yingping. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1272-1278. doi: 10.3866/PKU.WHXB201803221 shu

Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells

  • Corresponding author: ZOU Yingping, yingpingzou@csu.edu.cn
  • Received Date: 22 February 2018
    Revised Date: 19 March 2018
    Accepted Date: 20 March 2018
    Available Online: 22 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51673205, 51173206) and the Science Fund for Distinguished Young Scholars of Hunan Province, China (2017JJ1029)the Science Fund for Distinguished Young Scholars of Hunan Province, China 2017JJ1029the National Natural Science Foundation of China 51173206the National Natural Science Foundation of China 51673205

  • Polymer solar cells (PSCs) with bulk heterojunction (BHJ) structures have seen rapid development in recent years. In comparison with their inorganic counterparts, PSCs have some advantages such as low cost, light weight, solution processability, and good mechanical flexibility. However, improvement of the power conversion efficiency (PCE) of PSCs is required for commercial applications. In order to achieve high-performance PSCs, active layers, including donor polymers and acceptors, are very important. Several design principles for conjugated donor polymers in PSCs have emerged, including optimization of the conjugated backbone, side-chains, and substituents. In the past few decades, various classes of electron-donating polymers have been reported for PSCs. Among them, quinoxaline (Qx) is a unique building block for the construction of different optoelectronic polymers because of its planar, rigid, and conjugated structure. Qx derivatives have proven interesting and have been widely employed in many fields. Qx-based conjugated polymers (or small molecules) can be easily modified to match with ball-like fullerene derivatives such as PCBM ([6, 6]-phenyl-C61 or C71-butyric acid methyl ester) or weak crystalline non-fullerene acceptors such as 2, 2'-[[6, 6, 12, 12-tetrakis(4-hexylphenyl)-6, 12, -dihydrodithieno[2, 3-d:2', 3'-d']-s-indaceno[1, 2-b:5, 6-b']dithiophene-2, 8-diyl]bis[methylidyne(3-oxo-1H-indene-2, 1(3H)-diylidene)]]bispropanedinitrile (ITIC). Herein, we synthesized a Qx-based polymer with asymmetric side-chains (TPQ-1). The molecular weight, optical properties, molecular energy levels, and mobilities of TPQ-1 were investigated. Furthermore, the blend morphologies and photovoltaic properties of TPQ-1 using a strong crystalline non-fullerene (NF) acceptor (o-IDTBR) were systematically explored. The photovoltaic performance of TPQ-1 and its symmetric side-chain counterpart, HFQx-T, was compared. The introduction of asymmetric side-chains led to a favorable phase separation when blended with o-IDTBR. As expected, the TPQ-1:o-IDTBR-based devices exhibited a high PCE of 8.6% after thermal annealing (TA). In contrast, the HFQx-T:o-IDTBR-based devices showed a moderate PCE of 5.7%, moreover, the PCE was decreased to 4.6% after TA treatment. More importantly, a low bandgap material, PTB7-Th, was specifically selected as a third component to mix with the TPQ-1:o-IDTBR blend to form highly-efficient ternary PSCs. At an optimal weight ratio (15%) of PTB7-Th addition, a PCE of 9.6% was achieved. In the systems that were investigated, TPQ-1 demonstrated significantly better photovoltaic properties than the HFQx-T-based devices. These results indicate that Qx-based polymers with asymmetric side chains have a bright future in photovoltaic devices.
  • 加载中
    1. [1]

      Li, Y. Acc. Chem. Res. 2012, 45, 723. doi: 10.1021/ar2002446  doi: 10.1021/ar2002446

    2. [2]

      Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev.2015, 115, 12666. doi: 10.1021/acs.chemrev.5b00098  doi: 10.1021/acs.chemrev.5b00098

    3. [3]

      Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. doi: 10.1038/nmat1500  doi: 10.1038/nmat1500

    4. [4]

      Zhou, H.; Yang, L.; You, W. Macromolecules 2012, 45, 607. doi: 10.1021/ma201648t  doi: 10.1021/ma201648t

    5. [5]

      Lai, Y. Y.; Cheng, Y. J.; Hsu, C. S. Energy Environ. Sci. 2014, 7, 1866. doi: 10.1039/C3EE43080D  doi: 10.1039/C3EE43080D

    6. [6]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324. doi: 10.1021/cr050149z  doi: 10.1021/cr050149z

    7. [7]

      Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sin. 2014, 72, 158. doi: 10.6023/A13111142  doi: 10.6023/A13111142

    8. [8]

      Xiao, Z.; Jia, X.; Ding, L. Sci. Bull. 2017, 62, 1562. doi: 10.1016/j.scib.2017.11.003  doi: 10.1016/j.scib.2017.11.003

    9. [9]

      Dou, C.; Liu, J.; Wang, L. Sci. China Chem. 2017, 60, 450. doi: 10.1007/s11426-016-0503-x  doi: 10.1007/s11426-016-0503-x

    10. [10]

      Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; et al. Nat. Commun. 2016, 7, 13740. doi: 10.1038/ncomms13740  doi: 10.1038/ncomms13740

    11. [11]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc.2017, 139, 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    12. [12]

      Wu, Q.; Zhao, D.; Schneider, A. M.; Chen, W.; Yu, L. J. Am. Chem. Soc. 2016, 138, 7248. doi: 10.1021/jacs.6b03562  doi: 10.1021/jacs.6b03562

    13. [13]

      Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; et al. J. Am. Chem. Soc. 2016, 138, 10184. doi: 10.1021/jacs.6b04368  doi: 10.1021/jacs.6b04368

    14. [14]

      Liu, Y.; Zhang, Z.; Feng, S.; Li, M.; Wu, L.; Hou, R.; Xu, X.; Chen, X.; Bo, Z. J. Am. Chem. Soc. 2017, 139, 3356. doi: 10.1021/jacs.7b00566  doi: 10.1021/jacs.7b00566

    15. [15]

      Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; et al. J. Am. Chem. Soc. 2016, 138, 4955. doi: 10.1021/jacs.6b02004  doi: 10.1021/jacs.6b02004

    16. [16]

      Li, Y.; Lin, J. D.; Che, X.; Qu, Y.; Liu, F.; Liao, L. S.; Forrest, S. R. J. Am. Chem. Soc. 2017, 139, 17114. doi: 10.1021/jacs.7b11278  doi: 10.1021/jacs.7b11278

    17. [17]

      Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; et al. J. Am. Chem. Soc. 2017, 139, 4929. doi: 10.1021/jacs.7b01170  doi: 10.1021/jacs.7b01170

    18. [18]

      Liu, Y.; Liu, J.; Zhang, L.; Fang, J.; Zhang, W.; Liu, Z. Chin. J. Org. Chem. 2014, 34, 1021. doi: 10.6023/cjoc201311041  doi: 10.6023/cjoc201311041

    19. [19]

      Ma, Y.; Zhang, M.; Tang, Y.; Ma, W.; Zheng, Q. Chem. Mater. 2017, 29, 9775. doi: 10.1021/acs.chemmater.7b03770  doi: 10.1021/acs.chemmater.7b03770

    20. [20]

      Park, G. E.; Choi, S.; Park, S. Y.; Lee, D. H.; Cho, M. J.; Choi, D. H. Adv. Energy Mater. 2017, 7, 1700566.doi: 10.1002/aenm.201700566  doi: 10.1002/aenm.201700566

    21. [21]

      Zhang, K.; Gao, K.; Xia, R.; Wu, Z.; Sun, C.; Cao, J.; Qian, L.; Li, W.; Liu, S.; Huang, F.; et al. Adv. Mater. 2016, 28, 4817. doi: 10.1002/adma.201506270  doi: 10.1002/adma.201506270

    22. [22]

      Zhang, G.; Yang, G.; Yan, H.; Kim, J. H.; Ade, H.; Wu, W.; Xu, X.; Duan, Y.; Peng, Q. Adv. Mater. 2017, 29, 1606054. doi: 10.1002/adma.201606054  doi: 10.1002/adma.201606054

    23. [23]

      Xu, S. J.; Zhou, Z.; Liu, W.; Zhang, Z.; Liu, F.; Yan, H.; Zhu, X. Adv. Mater. 2017, 29, 1704510. doi: 10.1002/adma.201704510  doi: 10.1002/adma.201704510

    24. [24]

      Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K.; Zhu, J.; Huo, L.; Bin, H.; et al. Adv. Mater. 2017, 29, 1604155. doi: 10.1002/adma.201604155  doi: 10.1002/adma.201604155

    25. [25]

      Cheng, P.; Wang, R.; Zhu, J.; Huang, W.; Chang, S. Y.; Meng, L.; Sun, P.; Cheng, H. W.; Qin, M.; Zhu, C.; et al. Adv. Mater. 2018, 30, 1705243. doi: 10.1002/adma.201705243  doi: 10.1002/adma.201705243

    26. [26]

      Fei, Z.; Eisner, F. D.; Jiao, X.; Azzouzi, M.; Rohr, J. A.; Han, Y.; Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.; et al. Adv. Mater. 2018, 30, 1705209. doi: 10.1002/adma.201705209  doi: 10.1002/adma.201705209

    27. [27]

      Huang, W.; Cheng, P.; Yang, Y. M.; Li, G.; Yang, Y. Adv. Mater. 2018, 30, 1705706. doi: 10.1002/adma.201705706  doi: 10.1002/adma.201705706

    28. [28]

      Liu, D.; Wang, J.; Gu, C.; Li, Y.; Bao, X.; Yang, R. Adv. Mater. 2018, 30, 1705870. doi: 10.1002/adma.201705870  doi: 10.1002/adma.201705870

    29. [29]

      Luo, Z.; Bin, H.; Liu, T.; Zhang, Z. G.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; et al. Adv. Mater. 2018, 30, 1706124. doi: 10.1002/adma.201706124  doi: 10.1002/adma.201706124

    30. [30]

      Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; et al. Adv. Mater. 2018, 30, 1704713. doi: 10.1002/adma.201704713  doi: 10.1002/adma.201704713

    31. [31]

      Qiu, B.; Xue, L.; Yang, Y.; Bin, H.; Zhang, Y.; Zhang, C.; Xiao, M.; Park, K.; Morrison, W.; Zhang, Z. G.; et al. Chem. Mater. 2017, 29, 7543. doi: 10.1021/acs.chemmater.7b02536  doi: 10.1021/acs.chemmater.7b02536

    32. [32]

      Feng, G.; Li, J.; Colberts, F. J. M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R. A. J.; Li, C.; et al. J. Am. Chem. Soc. 2017, 139, 18647. doi: 10.1021/jacs.7b10499  doi: 10.1021/jacs.7b10499

    33. [33]

      Yao, Z.; Liao, X.; Gao, K.; Lin, F.; Xu, X.; Shi, X.; Zuo, L.; Liu, F.; Chen, Y.; Jen, A. K. J. Am. Chem. Soc. 2018, 140, 2054. doi: 10.1021/jacs.7b13239  doi: 10.1021/jacs.7b13239

    34. [34]

      Fan, B.; Ying, L.; Wang, Z.; He, B.; Jiang, X. F.; Huang, F.; Cao, Y. Energy Environ. Sci. 2017, 10, 1243. doi: 10.1039/C7EE00619E  doi: 10.1039/C7EE00619E

    35. [35]

      Zhang, X.; Zhan, C.; Yao, J. Chem. Mater. 2015, 27, 166. doi: 10.1021/cm504140c  doi: 10.1021/cm504140c

    36. [36]

      Guo, B.; Li, W.; Guo, X.; Meng, X.; Ma, W.; Zhang, M.; Li, Y. Adv. Mater. 2017, 29, 1702291. doi: 10.1002/adma.201702291  doi: 10.1002/adma.201702291

    37. [37]

      Duan, Y.; Xu, X.; Yan, H.; Wu, W.; Li, Z.; Peng, Q. Adv. Mater. 2017, 29, 1605115. doi: 10.1002/adma.201605115  doi: 10.1002/adma.201605115

    38. [38]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    39. [39]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc., 2016, 138, 4657. doi: 10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    40. [40]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; et al. Nat. Commun. 2016, 7, 13651. doi: 10.1038/ncomms13651  doi: 10.1038/ncomms13651

    41. [41]

      Xue, L.; Yang, Y.; Xu, J.; Zhang, C.; Bin, H.; Zhang, Z. G.; Qiu, B.; Li, X.; Sun, C.; Gao, L.; et al. Adv. Mater. 2017, 29, 1703344. doi: 10.1002/adma.201703344  doi: 10.1002/adma.201703344

    42. [42]

      Yuan, J.; Qiu, L.; Zhang, Z.; Li, Y.; He, Y.; Jiang, L.; Zou, Y. Chem. Commun. 2016, 52, 6881. doi: 10.1039/C6CC01771A  doi: 10.1039/C6CC01771A

    43. [43]

      Yuan, J.; Qiu, L.; Zhang, Z. G.; Li, Y.; Chen, Y.; Zou, Y. Nano Energy 2016, 30, 312. doi: 10.1016/j.nanoen.2016.10.008  doi: 10.1016/j.nanoen.2016.10.008

    44. [44]

      Yuan, J.; Ouyang, J.; Cimrová, V.; Leclerc, M.; Najari, A.; Zou, Y. J. Mater. Chem. C 2017, 5, 1858. doi: 10.1039/C6TC05381E  doi: 10.1039/C6TC05381E

    45. [45]

      Gedefaw, D.; Prosa, M.; Bolognesi, M.; Seri, M.; Andersson, M. R. Adv. Energy Mater. 2017, 7, 1700575. doi: 10.1002/aenm.201700575  doi: 10.1002/aenm.201700575

    46. [46]

      Liu, M.; Gao, Y.; Zhang, Y.; Liu, Z.; Zhao, L. Polym. Chem. 2017, 8, 4613. doi: 10.1039/C7PY00850C  doi: 10.1039/C7PY00850C

    47. [47]

      Xu, S.; Feng, L.; Yuan, J.; Zhang, Z. G.; Li, Y.; Peng, H.; Zou, Y. ACS Appl. Mater. Interfaces 2017, 9, 18816. doi: 10.1021/acsami.7b03947  doi: 10.1021/acsami.7b03947

    48. [48]

      Zhang, Z.; Feng, L.; Xu, S.; Yuan, J.; Zhang, Z. G.; Peng, H.; Li, Y.; Zou, Y. J. Mater. Chem. A 2017, 5, 11286. doi: 10.1039/C7TA02486J  doi: 10.1039/C7TA02486J

    49. [49]

      Zhang, Z.; Feng, L.; Xu, S.; Liu, Y.; Peng, H.; Zhang, Z. G.; Li, Y.; Zou, Y. Adv. Sci. 2017, 4, 1700152. doi: 10.1002/advs.201700152  doi: 10.1002/advs.201700152

    50. [50]

      Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Rohr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Nat. Mater.2017, 16, 363. doi: 10.1038/nmat4797  doi: 10.1038/nmat4797

    51. [51]

      Jia, B.; Wu, Y.; Zhao, F.; Yan, C.; Zhu, S.; Cheng, P.; Mai, J.; Lau, T. K.; Lu, X.; Su, C. J.; et al. Sci. China Chem. 2017, 60, 257. doi: 10.1007/s11426-016-0336-6  doi: 10.1007/s11426-016-0336-6

    52. [52]

      Feng, S.; Zhang, C.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Adv. Mater. 2017, 29, 1703527. doi: 10.1002/adma.201703527  doi: 10.1002/adma.201703527

    53. [53]

      Kouijzer, S.; Michels, J. J.; van den Berg, M.; Gevaerts, V. S.; Turbiez, M.; Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 2013, 135, 12057. doi: 10.1021/ja405493j  doi: 10.1021/ja405493j

    54. [54]

      Li, Z.; Jiang, K.; Yang, G.; Lai, J. Y.; Ma, T.; Zhao, J.; Ma, W.; Yan, H. Nat. Commun. 2016, 7, 13094. doi: 10.1038/ncomms13094  doi: 10.1038/ncomms13094

  • 加载中
    1. [1]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    19. [19]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

Metrics
  • PDF Downloads(10)
  • Abstract views(890)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return