Citation: YIN Yazhi, HU Bing, LIU Guoliang, ZHOU Xiaohai, HONG Xinlin. ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 327-336. doi: 10.3866/PKU.WHXB201803212 shu

ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol

  • Corresponding author: ZHOU Xiaohai, zxh7954@hotmail.com HONG Xinlin, hongxl@whu.edu.cn
  • Received Date: 26 February 2018
    Revised Date: 12 March 2018
    Accepted Date: 19 March 2018
    Available Online: 21 March 2018

    Fund Project: the National Science Foundation of China 21373153The project was supported by the National Science Foundation of China (21373153)

  • Catalytic CO2 hydrogenation to methanol is a promising route to mitigate the negative effects of anthropogenic CO2. To develop an efficient Pd/ZnO catalyst, increasing the contact between Pd and ZnO is of the utmost importance, because "naked" Pd favors CO production via the reverse water-gas shift path. Here, we have utilized a ZnO@ZIF-8 core-shell structure to synthesize Pd/ZnO catalysts via Pd immobilization and calcination. The merit of this method is that the porous outer layer can offer abundant "guest rooms" for Pd, ensuring intimate contact between Pd and the post-generated ZnO. The synthesized Pd/ZnO catalysts (PZZ8-T, T denotes the temperature of calcination in degree Celsius) is compared with a ZnO nanorod-immobilized Pd catalyst (PZ). When the catalytic reaction was performed at lower reaction temperatures (250, 270, and 290 ℃), the highest methanol space time yield (STY) and highest STY per Pd achieved by PZ at 290 ℃ were 0.465 g gcat-1 h-1 and 13.0 g gPd-1 h-1, respectively. However, all the PZZ8-T catalysts exhibited methanol selectivity values greater than 67.0% at 290 ℃, in sharp contrast to a methanol selectivity value of 32.8% for PZ at the same temperature. Thus, we performed additional investigations of the PZZ8-T catalysts at 310 and 360 ℃, which are unusually high temperatures for CO2 hydrogenation to methanol because the required endothermic reaction is expected to be severely inhibited at such high temperatures. Interestingly, the PZZ8-T catalysts were observed to achieve a methanol selectivity value of approximately 60% at 310 ℃, and PZZ8-400 was observed to maintain a methanol selectivity value of 51.9% even at a temperature of 360 ℃. Thus, PZZ8-400 attains the highest methanol STY of 0.571 g gcat-1 h-1at 310 ℃. For a better understanding of the structure-performance relationship, we characterized the catalysts using different techniques, focusing especially on the surface properties. X-ray photoelectron spectroscopy (XPS) results indicated a linear relationship between the methanol selectivity and the surface PdZn : Pd ratio, proving that the surface PdZn phase is the active site for CO2 hydrogenation to methanol. Furthermore, analysis of the XPS O 1s spectrum together with the electronic paramagnetic resonance results revealed that both, the oxygen vacancy as well as the ZnO polar surface, played important roles in CO2 activation. Chemisorption techniques provided further quantitative and qualitative information regarding the Pd-ZnO interface that is closely related to the CO2 conversion rate. We believe that our results can provide insight into the catalytic reaction of CO2 hydrogenation from the perspective of surface science. In addition, this work is an illustrative example of the use of novel chemical structures in the fabrication of superior catalysts using a traditional formula.
  • 加载中
    1. [1]

      Li, Y.; Chan, S. H.; Sun, Q. Nanoscale 2015, 7, 8663. doi: 10.1039/C5NR00092K  doi: 10.1039/C5NR00092K

    2. [2]

      Porosoff, M. D.; Yan, B.; Chen, J. G. Energy Environ. Sci. 2016, 9, 62. doi: 10.1039/C5EE02657A  doi: 10.1039/C5EE02657A

    3. [3]

      Lee, S. Methanol Synthesis Technology; Taylor & Francis: Arbingdon, UK, 1989.

    4. [4]

      Stiles, A. AIChE J. 1977, 23, 362. doi: 10.1002/aic.690230321  doi: 10.1002/aic.690230321

    5. [5]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L.; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831  doi: 10.1126/science.1219831

    6. [6]

      Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    7. [7]

      Erdöhelyi, A.; Pásztor, M.; Solymosi, F. J. Catal. 1986, 98, 166. doi: 10.1016/0021-9517(86)90306-4  doi: 10.1016/0021-9517(86)90306-4

    8. [8]

      Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Chem. Eng. Res. Des. 2014, 92, 2557. doi: 10.1016/j.cherd.2014.03.005  doi: 10.1016/j.cherd.2014.03.005

    9. [9]

      Liang, X. -L.; Dong, X.; Lin, G. -D.; Zhang, H. -B. Appl. Catal. B-Environ. 2009, 88, 315. doi: 10.1016/j.apcatb.2008.11.018  doi: 10.1016/j.apcatb.2008.11.018

    10. [10]

      Xu, J.; Su, X.; Liu, X.; Pan, X.; Pei, G.; Huang, Y.; Wang, X.; Zhang, T.; Geng, H. Appl. Catal. A: Gen. 2016, 514, 51. doi: 10.1016/j.apcata.2016.01.006  doi: 10.1016/j.apcata.2016.01.006

    11. [11]

      Liao, F.; Wu, X. -P.; Zheng, J.; Li, M. M. -J.; Kroner, A.; Zeng, Z.; Hong, X.; Yuan, Y.; Gong, X. -Q.; Tsang, S. C. E. Green Chem. 2017, 19, 270. doi: 10.1039/C6GC02366E  doi: 10.1039/C6GC02366E

    12. [12]

      Mueller, M.; Hermes, S.; Kaehler, K.; van den Berg, M. W. E.; Muhler, M.; Fischer, R. A. Chem. Mater. 2008, 20, 4576. doi: 10.1021/cm703339h  doi: 10.1021/cm703339h

    13. [13]

      An, B.; Zhang, J.; Cheng, K.; Ji, P.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2017, 139, 3834. doi: 10.1021/jacs.7b00058  doi: 10.1021/jacs.7b00058

    14. [14]

      Wang, Y. Acta Phs. -Chim. Sin. 2017, 33, 857.  doi: 10.3866/PKU.WHXB201703172

    15. [15]

      Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Chem. Comm. 2011, 47, 2071. doi: 10.1039/C0CC05002D  doi: 10.1039/C0CC05002D

    16. [16]

      Jiang, H. -L.; Liu, B.; Lan, Y. -Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. doi: 10.1021/ja203184k  doi: 10.1021/ja203184k

    17. [17]

      Ding, S.; Yan, Q.; Jiang, H.; Zhong, Z.; Chen, R.; Xing, W. Chem. Eng. J. 2016, 296, 146. doi: 10.1016/j.cej.2016.03.098  doi: 10.1016/j.cej.2016.03.098

    18. [18]

      Koo, W. -T.; Choi, S. -J.; Kim, S. -J.; Jang, J. -S.; Tuller, H. L.; Kim, I. -D. J. Am. Chem. Soc. 2016, 138, 13431. doi: 10.1021/jacs.6b09167  doi: 10.1021/jacs.6b09167

    19. [19]

      Li, F. -L.; Li, H. -X.; Lang, J. -P. CrystEngComm 2016, 18, 1760. doi: 10.1039/C5CE02219C  doi: 10.1039/C5CE02219C

    20. [20]

      Wang, X.; Liu, J.; Leong, S.; Lin, X.; Wei, J.; Kong, B.; Xu, Y.; Low, Z.- X.; Yao, J.; Wang, H. ACS Appl. Mater. Inter. 2016, 8, 9080. doi: 10.1021/acsami.6b00028  doi: 10.1021/acsami.6b00028

    21. [21]

      Zhan, W. -W.; Kuang, Q.; Zhou, J. -Z.; Kong, X. -J.; Xie, Z. -X.; Zheng, L. -S. J. Am. Chem. Soc. 2013, 135, 1926. doi: 10.1021/ja311085e  doi: 10.1021/ja311085e

    22. [22]

      Liu, B.; Zeng, H. C. Langmuir 2004, 20, 4196. doi: 10.1021/la035264o  doi: 10.1021/la035264o

    23. [23]

      XRD data bank attached to X'Pert PRO X-ray Diffractometer; PANalytical: The Netherlands, 2003; PDF#43-1024 and PDF#46-1043.

    24. [24]

      Lu, H. S.; Zhang, H.; Liu, R.; Zhang, X.; Zhao, H.; Wang, G. Appl. Surf. Sci. 2017, 392, 402. doi: 10.1016/j.apsusc.2016.09.045  doi: 10.1016/j.apsusc.2016.09.045

    25. [25]

      Tian, H.; Fan, H.; Li, M.; Ma, L. ACS Sens. 2016, 1, 243. doi: 10.1021/acssensors.5b00236  doi: 10.1021/acssensors.5b00236

    26. [26]

      Jing, Z.; Zhan, J. Adv. Mater. 2008, 20, 4547. doi: 10.1002/adma.200800243  doi: 10.1002/adma.200800243

    27. [27]

      Hu, H. F.; He, T. Acta Phys. -Chim. Sin. 2016, 32, 543.  doi: 10.3866/PKU.WHXB201511194

    28. [28]

      Hariharan, C. Appl. Catal. A: Gen. 2006, 304, 55. doi: 10.1016/j.apcata.2006.02.020  doi: 10.1016/j.apcata.2006.02.020

    29. [29]

      Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Angew. Chem. Int. Ed. 2008, 47, 4144. doi: 10.1002/anie.200705998  doi: 10.1002/anie.200705998

    30. [30]

      Jun, L.; Zhu, Q. -L.; Xu, Q. Chem. Commun. 2014, 50, 5899. doi: 10.1039/C4CC00785A  doi: 10.1039/C4CC00785A

    31. [31]

      Graaf, G. H.; Sijtsema, P.; Stamhuis, E. J.; Joosten, G. E. H. Chem. Eng. Sci. 1986, 41, 2883. doi: 10.1016/0009-2509(86)80019-7  doi: 10.1016/0009-2509(86)80019-7

    32. [32]

      Djurisic, A. B.; Choy, W. C. H.; Roy, V. A. L.; Leung, Y. H.; Kwong, C. Y.; Cheah, K. W.; Rao, T. K. G.; Chan, W. K.; Lui, H. T.; Surya, C. Adv. Funct. Mater. 2004, 14, 856. doi: 10.1002/adfm.200305082  doi: 10.1002/adfm.200305082

    33. [33]

      Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M. Adv. Funct. Mater. 2005, 15, 1945. doi: 10.1002/adfm.200500087  doi: 10.1002/adfm.200500087

    34. [34]

      Rodriguez, J. A. J. Phys. Chem. 1994, 98 (22), 5758. doi: 10.1021/j100073a031  doi: 10.1021/j100073a031

    35. [35]

      Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S. Appl. Surf. Sci. 2000, 158, 134. doi: 10.1016/S0169-4332(99)00601-7  doi: 10.1016/S0169-4332(99)00601-7

    36. [36]

      Wei, X. Q.; Man, B. Y.; Liu, M.; Xue, C. S.; Zhuang, H. Z.; Yang, C. Phys. B: Condens. Matter 2007, 388, 145. doi: 10.1016/j.physb.2006.05.346  doi: 10.1016/j.physb.2006.05.346

    37. [37]

      Behrens, M.; Zander, S.; Kurr, P.; Jacobsen, N.; Senker, J.; Koch, G.; Ressler, T.; Fischer, R. W.; Schlögl, R. J. Am. Chem. Soc. 2013, 135, 6061. doi: 10.1021/ja310456f  doi: 10.1021/ja310456f

    38. [38]

      Liao, F.; Huang, Y.; Ge, J.; Zheng, W.; Tedsree, K.; Collier, P.; Hong, X.; Tsang, S. C. Angew. Chem. Int. Ed. 2011, 50, 2162. doi: 10.1002/anie.201007108  doi: 10.1002/anie.201007108

    39. [39]

      Ehrlich, D.; Wohlrab, S.; Wambach, J.; Kuhlenbeck, H.; Freund, H. J. Vacuum 1990, 41, 157. doi: 10.1016/S0042-207X(05)80144-7  doi: 10.1016/S0042-207X(05)80144-7

  • 加载中
    1. [1]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    4. [4]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    5. [5]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    6. [6]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    7. [7]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    8. [8]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    9. [9]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    10. [10]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    11. [11]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    12. [12]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    13. [13]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    14. [14]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    15. [15]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    16. [16]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    17. [17]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    20. [20]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

Metrics
  • PDF Downloads(21)
  • Abstract views(466)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return