ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol
- Corresponding author: ZHOU Xiaohai, zxh7954@hotmail.com HONG Xinlin, hongxl@whu.edu.cn
Citation:
YIN Yazhi, HU Bing, LIU Guoliang, ZHOU Xiaohai, HONG Xinlin. ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol[J]. Acta Physico-Chimica Sinica,
;2019, 35(3): 327-336.
doi:
10.3866/PKU.WHXB201803212
Li, Y.; Chan, S. H.; Sun, Q. Nanoscale 2015, 7, 8663. doi: 10.1039/C5NR00092K
doi: 10.1039/C5NR00092K
Porosoff, M. D.; Yan, B.; Chen, J. G. Energy Environ. Sci. 2016, 9, 62. doi: 10.1039/C5EE02657A
doi: 10.1039/C5EE02657A
Lee, S. Methanol Synthesis Technology; Taylor & Francis: Arbingdon, UK, 1989.
Stiles, A. AIChE J. 1977, 23, 362. doi: 10.1002/aic.690230321
doi: 10.1002/aic.690230321
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L.; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831
doi: 10.1126/science.1219831
Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573
doi: 10.1126/science.aal3573
Erdöhelyi, A.; Pásztor, M.; Solymosi, F. J. Catal. 1986, 98, 166. doi: 10.1016/0021-9517(86)90306-4
doi: 10.1016/0021-9517(86)90306-4
Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Chem. Eng. Res. Des. 2014, 92, 2557. doi: 10.1016/j.cherd.2014.03.005
doi: 10.1016/j.cherd.2014.03.005
Liang, X. -L.; Dong, X.; Lin, G. -D.; Zhang, H. -B. Appl. Catal. B-Environ. 2009, 88, 315. doi: 10.1016/j.apcatb.2008.11.018
doi: 10.1016/j.apcatb.2008.11.018
Xu, J.; Su, X.; Liu, X.; Pan, X.; Pei, G.; Huang, Y.; Wang, X.; Zhang, T.; Geng, H. Appl. Catal. A: Gen. 2016, 514, 51. doi: 10.1016/j.apcata.2016.01.006
doi: 10.1016/j.apcata.2016.01.006
Liao, F.; Wu, X. -P.; Zheng, J.; Li, M. M. -J.; Kroner, A.; Zeng, Z.; Hong, X.; Yuan, Y.; Gong, X. -Q.; Tsang, S. C. E. Green Chem. 2017, 19, 270. doi: 10.1039/C6GC02366E
doi: 10.1039/C6GC02366E
Mueller, M.; Hermes, S.; Kaehler, K.; van den Berg, M. W. E.; Muhler, M.; Fischer, R. A. Chem. Mater. 2008, 20, 4576. doi: 10.1021/cm703339h
doi: 10.1021/cm703339h
An, B.; Zhang, J.; Cheng, K.; Ji, P.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2017, 139, 3834. doi: 10.1021/jacs.7b00058
doi: 10.1021/jacs.7b00058
Wang, Y. Acta Phs. -Chim. Sin. 2017, 33, 857.
doi: 10.3866/PKU.WHXB201703172
Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Chem. Comm. 2011, 47, 2071. doi: 10.1039/C0CC05002D
doi: 10.1039/C0CC05002D
Jiang, H. -L.; Liu, B.; Lan, Y. -Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. doi: 10.1021/ja203184k
doi: 10.1021/ja203184k
Ding, S.; Yan, Q.; Jiang, H.; Zhong, Z.; Chen, R.; Xing, W. Chem. Eng. J. 2016, 296, 146. doi: 10.1016/j.cej.2016.03.098
doi: 10.1016/j.cej.2016.03.098
Koo, W. -T.; Choi, S. -J.; Kim, S. -J.; Jang, J. -S.; Tuller, H. L.; Kim, I. -D. J. Am. Chem. Soc. 2016, 138, 13431. doi: 10.1021/jacs.6b09167
doi: 10.1021/jacs.6b09167
Li, F. -L.; Li, H. -X.; Lang, J. -P. CrystEngComm 2016, 18, 1760. doi: 10.1039/C5CE02219C
doi: 10.1039/C5CE02219C
Wang, X.; Liu, J.; Leong, S.; Lin, X.; Wei, J.; Kong, B.; Xu, Y.; Low, Z.- X.; Yao, J.; Wang, H. ACS Appl. Mater. Inter. 2016, 8, 9080. doi: 10.1021/acsami.6b00028
doi: 10.1021/acsami.6b00028
Zhan, W. -W.; Kuang, Q.; Zhou, J. -Z.; Kong, X. -J.; Xie, Z. -X.; Zheng, L. -S. J. Am. Chem. Soc. 2013, 135, 1926. doi: 10.1021/ja311085e
doi: 10.1021/ja311085e
Liu, B.; Zeng, H. C. Langmuir 2004, 20, 4196. doi: 10.1021/la035264o
doi: 10.1021/la035264o
XRD data bank attached to X'Pert PRO X-ray Diffractometer; PANalytical: The Netherlands, 2003; PDF#43-1024 and PDF#46-1043.
Lu, H. S.; Zhang, H.; Liu, R.; Zhang, X.; Zhao, H.; Wang, G. Appl. Surf. Sci. 2017, 392, 402. doi: 10.1016/j.apsusc.2016.09.045
doi: 10.1016/j.apsusc.2016.09.045
Tian, H.; Fan, H.; Li, M.; Ma, L. ACS Sens. 2016, 1, 243. doi: 10.1021/acssensors.5b00236
doi: 10.1021/acssensors.5b00236
Jing, Z.; Zhan, J. Adv. Mater. 2008, 20, 4547. doi: 10.1002/adma.200800243
doi: 10.1002/adma.200800243
Hu, H. F.; He, T. Acta Phys. -Chim. Sin. 2016, 32, 543.
doi: 10.3866/PKU.WHXB201511194
Hariharan, C. Appl. Catal. A: Gen. 2006, 304, 55. doi: 10.1016/j.apcata.2006.02.020
doi: 10.1016/j.apcata.2006.02.020
Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Angew. Chem. Int. Ed. 2008, 47, 4144. doi: 10.1002/anie.200705998
doi: 10.1002/anie.200705998
Jun, L.; Zhu, Q. -L.; Xu, Q. Chem. Commun. 2014, 50, 5899. doi: 10.1039/C4CC00785A
doi: 10.1039/C4CC00785A
Graaf, G. H.; Sijtsema, P.; Stamhuis, E. J.; Joosten, G. E. H. Chem. Eng. Sci. 1986, 41, 2883. doi: 10.1016/0009-2509(86)80019-7
doi: 10.1016/0009-2509(86)80019-7
Djurisic, A. B.; Choy, W. C. H.; Roy, V. A. L.; Leung, Y. H.; Kwong, C. Y.; Cheah, K. W.; Rao, T. K. G.; Chan, W. K.; Lui, H. T.; Surya, C. Adv. Funct. Mater. 2004, 14, 856. doi: 10.1002/adfm.200305082
doi: 10.1002/adfm.200305082
Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M. Adv. Funct. Mater. 2005, 15, 1945. doi: 10.1002/adfm.200500087
doi: 10.1002/adfm.200500087
Rodriguez, J. A. J. Phys. Chem. 1994, 98 (22), 5758. doi: 10.1021/j100073a031
doi: 10.1021/j100073a031
Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S. Appl. Surf. Sci. 2000, 158, 134. doi: 10.1016/S0169-4332(99)00601-7
doi: 10.1016/S0169-4332(99)00601-7
Wei, X. Q.; Man, B. Y.; Liu, M.; Xue, C. S.; Zhuang, H. Z.; Yang, C. Phys. B: Condens. Matter 2007, 388, 145. doi: 10.1016/j.physb.2006.05.346
doi: 10.1016/j.physb.2006.05.346
Behrens, M.; Zander, S.; Kurr, P.; Jacobsen, N.; Senker, J.; Koch, G.; Ressler, T.; Fischer, R. W.; Schlögl, R. J. Am. Chem. Soc. 2013, 135, 6061. doi: 10.1021/ja310456f
doi: 10.1021/ja310456f
Liao, F.; Huang, Y.; Ge, J.; Zheng, W.; Tedsree, K.; Collier, P.; Hong, X.; Tsang, S. C. Angew. Chem. Int. Ed. 2011, 50, 2162. doi: 10.1002/anie.201007108
doi: 10.1002/anie.201007108
Ehrlich, D.; Wohlrab, S.; Wambach, J.; Kuhlenbeck, H.; Freund, H. J. Vacuum 1990, 41, 157. doi: 10.1016/S0042-207X(05)80144-7
doi: 10.1016/S0042-207X(05)80144-7
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Qiyan Wu , Qing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774