Citation: LIU Fangbin, LIU Jun, WANG Lixiang. An Organoboron Compound with a Thienyl Substituent as an Electron Acceptor for Organic Solar Cells[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 251-256. doi: 10.3866/PKU.WHXB201803163 shu

An Organoboron Compound with a Thienyl Substituent as an Electron Acceptor for Organic Solar Cells

  • Corresponding author: LIU Jun, liujun@ciac.ac.cn
  • Received Date: 29 January 2018
    Revised Date: 13 March 2018
    Accepted Date: 13 March 2018
    Available Online: 16 March 2018

    Fund Project: The project was supported by the National Key Basic Research and Development Program of China (2015CB655001), the National Natural Science Foundation of China (21625403), the Jilin Scientific and Technological Development Program, China (20170519003JH) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010200)the Strategic Priority Research Program of the Chinese Academy of Sciences XDB12010200the National Natural Science Foundation of China 21625403the Jilin Scientific and Technological Development Program, China 20170519003JHthe National Key Basic Research and Development Program of China 2015CB655001

  • Recently, non-fullerene small molecular acceptors (NFSMAs) have received great attention because of their broad and strong absorption spectra and stable active layer morphology when compared with traditional fullerene acceptors. The most widely used strategy to design NFSMAs is through A-D-A type molecules, in which an electron-rich core unit (D) is flanked by two electron-deficient units (A). In order to fine-tune the absorption spectra, energy levels, and photovoltaic properties of NFSMAs, great efforts have been made to modify the conjugated backbone of A-D-A type molecule acceptors. In a previous work, we developed a small molecular electron acceptor, namely MBN-Ph, with an A-D-A structure and an organoboron core unit. MBN-Ph exhibited distinctive absorption spectra with two absorption bands in short- and long-wavelength regions. It is known that side chains or substituents on small molecular electron acceptors can also play an important role in the molecular properties and photovoltaic performance of bulk heterojunction organic solar cells (OSCs). In this work, we report an A-D-A type organoboron compound (MBN-Th) bearing a thienyl substituent on the boron atom, which can be used as an electron acceptor for OSCs. The lowest unoccupied molecular orbital (LUMO) of MBN-Th delocalized on the entire backbone, while the highest occupied molecular orbital (HOMO) localized on the core unit. The unique electronic structure of MBN-Th resulted in two strong absorption peaks at 490 and 726 nm, which indicate a wide absorption spectrum and superior sunlight harvesting capability. Compared with the phenyl substituent, the thienyl group led to an unchanged LUMO energy level, low-lying HOMO energy level by 0.1 eV, and blue-shifted absorption spectrum by 20 nm. OSCs with MBN-Th as an electron acceptor showed a power conversion efficiency of 4.21% and a wide photoresponse from 300 to 850 nm. Our results indicate that the substitution of the boron atom with a thienyl group is an effective strategy to tune the electronic structure of organoboron compounds for applications as electron acceptors in OSCs.
  • 加载中
    1. [1]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    2. [2]

      Thompson, B. C.; Fréchet, J. M. Angew. Chem. Int. Ed. 2008, 47, 58. doi: 10.1002/anie.200702506  doi: 10.1002/anie.200702506

    3. [3]

      Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11  doi: 10.1038/nphoton.2012.11

    4. [4]

      Zhou, H.; Yang, L.; You, W. Macromolecules 2012, 45, 607. doi: 10.1021/ma201648t  doi: 10.1021/ma201648t

    5. [5]

      Zhou, S. C.; Feng, G. T.; Xia, D. D.; Li, C.; Wu, Y. G.; Li, W. W. Acta Phys. -Chim. Sin. 2018, 34, 344.  doi: 10.3866/PKU.WHXB201709112

    6. [6]

      Lin, Y.; Zhan, X. Adv. Energy Mater. 2015, 5, 1501063. doi: 10.1002/aenm.201501063  doi: 10.1002/aenm.201501063

    7. [7]

      Li, H.; Earmme, T.; Ren, G.; Saeki, A.; Yoshikawa, S.; Murari, N. M.; Subramaniyan, S.; Crane, M. J.; Seki, S.; Jenekhe, S. A. J. Am. Chem. Soc. 2014, 136, 14589. doi: 10.1021/ja508472j  doi: 10.1021/ja508472j

    8. [8]

      Nielsen, C. B.; Holliday, S.; Chen, H.; Cryer, S. J.; McCulloch, I. Acc. Chem. Res. 2015, 48, 2803. doi: 10.1021/acs.accounts.5b00199  doi: 10.1021/acs.accounts.5b00199

    9. [9]

      Lin, Y.; Wang, J.; Zhang, Z.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    10. [10]

      Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; Zhan, X. J. Am. Chem. Soc. 2017, 139, 1336. doi: 10.1021/jacs.6b12755  doi: 10.1021/jacs.6b12755

    11. [11]

      Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C.; Li, T.; Wang, J.; Zhu, J.; et al. J. Am. Chem. Soc. 2016, 138, 2973. doi: 10.1021/jacs.6b00853  doi: 10.1021/jacs.6b00853

    12. [12]

      Gao, W.; An, Q.; Ming, R.; Xie, D.; Wu, K.; Luo, Z.; Zou, Y.; Zhang, F.; Yang, C. Adv. Funct. Mater. 2017, 27, 1702194. doi: 10.1002/adfm.201702194  doi: 10.1002/adfm.201702194

    13. [13]

      Zhang, G.; Yang, G.; Yan, H.; Kim, J. H.; Ade, H.; Wu, W.; Xu, X.; Duan, Y.; Peng, Q.Adv. Mater. 2017, 29, 1606054. doi: 10.1002/adma.201606054  doi: 10.1002/adma.201606054

    14. [14]

      Liu, Y.; Zhang, Z.; Feng, S.; Li, M.; Wu, L.; Hou, R.; Xu, X.; Chen, X.; Bo, Z. J. Am. Chem. Soc. 2017, 139, 3356. doi: 10.1021/jacs.7b00566  doi: 10.1021/jacs.7b00566

    15. [15]

      Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H. Adv. Mater. 2017, 29, 1705208. doi: 10.1002/adma.201705208  doi: 10.1002/adma.201705208

    16. [16]

      Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; Yan, H.; Zhao, D. Adv. Mater. 2017, 29, 1700309. doi: 10.1002/adma.201700309  doi: 10.1002/adma.201700309

    17. [17]

      Liu, F.; Zhou, Z.; Zhang, C.; Vergote, T.; Fan, H.; Liu, F.; Zhu, X.J. Am. Chem. Soc. 2016, 138, 15523. doi: 10.1021/jacs.6b08523  doi: 10.1021/jacs.6b08523

    18. [18]

      Chen, S.; Liu, Y.; Zhang, L.; Chow, P. C. Y.; Zheng, W.; Zhang, G.; Ma, W.; Yan, H. J. Am. Chem. Soc. 2017, 139, 6298. doi: 10.1021/jacs.7b01606  doi: 10.1021/jacs.7b01606

    19. [19]

      Tang, A.; Xiao, B.; Wang, Y.; Gao, F.; Tajima, K.; Bin, H.; Zhang, Z.; Li, Y.; Wei, Z.; Zhou, E.Adv. Funct. Mater. 2018, 28, 1704507. doi: 10.1002/adfm.201704507  doi: 10.1002/adfm.201704507

    20. [20]

      Holliday, S.; Ashraf, R. S.; Nielsen, C. B.; Kirkus, M.; Röhr, J. A.; Tan, C.; Collado-Fregoso, E.; Knall, A.; Durrant, J. R.; Nelson, J.; et al. J. Am. Chem. Soc. 2015, 137, 898. doi: 10.1021/ja5110602  doi: 10.1021/ja5110602

    21. [21]

      Bin, H.; Zhang, Z.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 4657.doi: 10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    22. [22]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28, 4734. doi: 10.1002/adma.201600281  doi: 10.1002/adma.201600281

    23. [23]

      Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Adv. Mater. 2016, 28, 9423. doi: 10.1002/adma.201602776  doi: 10.1002/adma.201602776

    24. [24]

      Qiu, N.; Zhang, H.; Wan, X.; Li, C.; Ke, X.; Feng, H.; Kan, B.; Zhang, H.; Zhang, Q.; Lu, Y.; et al. Adv. Mater. 2017, 29, 1604964. doi: 10.1021/jacs.7b01170  doi: 10.1021/jacs.7b01170

    25. [25]

      Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2015, 137, 11156. doi: 10.1021/jacs.5b06414  doi: 10.1021/jacs.5b06414

    26. [26]

      Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; et al. J. Am. Chem. Soc. 2016, 138, 375. doi: 10.1021/jacs.5b11149  doi: 10.1021/jacs.5b11149

    27. [27]

      Zhang, X.; Lu, Z.; Ye, L.; Zhan, C.; Hou, J.; Zhang, S.; Jiang, B.; Zhao, Y.; Huang, J.; Zhang, S.; et al. Adv. Mater. 2013, 25, 5791. doi: 10.1002/adma.201300897  doi: 10.1002/adma.201300897

    28. [28]

      Wu, Q.; Zhao, D.; Schneider, A. M.; Chen, W.; Yu, L. J. Am. Chem. Soc. 2016, 138, 7248. doi: 10.1021/jacs.6b03562  doi: 10.1021/jacs.6b03562

    29. [29]

      Zhong, Y.; Trinh, M. T.; Chen, R.; Purdum, G. E.; Khlyabich, P. P.; Sezen, M.; Oh, S.; Zhu, H.; Fowler, B.; Zhang, B.; et al. Nat. Commun. 2015, 6, 8242. doi: 10.1038/ncomms9242  doi: 10.1038/ncomms9242

    30. [30]

      Hartnett, P. E.; Timalsina, A.; Matte, H. S. S. R.; Zhou, N.; Guo, X.; Zhao, W.; Facchetti, A.; Chang, R. P. H.; Hersam, M. C.; Wasielewski, M. R.; et al. J. Am. Chem. Soc. 2014, 136, 16345. doi: 10.1021/ja508814z  doi: 10.1021/ja508814z

    31. [31]

      Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. Adv. Mater. 2017, 29, 1703906. doi: 10.1002/adma.201703906  doi: 10.1002/adma.201703906

    32. [32]

      Bin, H.; Yang, Y.; Zhang, Z.; Ye, L.; Ghasemi, M.; Chen, S.; Zhang, Y.; Zhang, C.; Sun, C.; Xue, L.; et al.J. Am. Chem. Soc. 2017, 139, 5085. doi: 10.1021/jacs.6b12826  doi: 10.1021/jacs.6b12826

    33. [33]

      Long, X.; Ding, Z.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Adv. Mater. 2016, 28, 6504. doi: 10.1002/adma.201601205  doi: 10.1002/adma.201601205

    34. [34]

      Zhao, R.; Bi, Z.; Dou, C.; Ma, W.; Han, Y.; Liu, J.; Wang, L. Macromolecules 2017, 50, 3171. doi: 10.1021/acs.macromol.7b00386  doi: 10.1021/acs.macromol.7b00386

    35. [35]

      Dou, C.; Ding, Z.; Zhang, Z.; Xie, Z.; Liu, J.; Wang, L. Angew. Chem. Int. Ed. 2015, 54, 3648.doi: 10.1002/anie.201411973  doi: 10.1002/anie.201411973

    36. [36]

      Zhao, R.; Dou, C.; Xie, Z.; Liu, J.; Wang, L. Angew. Chem. Int. Ed. 2016, 55, 5313. doi: 10.1002/anie.201601305  doi: 10.1002/anie.201601305

    37. [37]

      Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu, J.; Wang, L. Angew. Chem. Int. Ed. 2016, 55, 1458. doi: 10.1002/anie.201508482  doi: 10.1002/anie.201508482

    38. [38]

      Zhao, R.; Dou, C.; Liu, J.; Wang, L. Chin. J. Polym. Sci. 2017, 2, 198. doi: 10.1007/s10118-017-1878-9  doi: 10.1007/s10118-017-1878-9

    39. [39]

      Liu, J.; Wang, L. Acta Polym. Sin. 2017, 1856. doi: 10.11777/j.issn1000-3304.2017.17205  doi: 10.11777/j.issn1000-3304.2017.17205

    40. [40]

      Min, Y.; Dou, C.; Tian, H.; Geng, Y.; Liu, J.; Wang, L. Angew. Chem. Int. Ed. 2018, 57, 2000. doi: 10.1002/anie.201712986  doi: 10.1002/anie.201712986

    41. [41]

      Liu, F.; Ding, Z.; Liu, J.; Wang, L. Chem. Commun. 2017, 53, 12213. doi: 10.1039/c7cc07494h  doi: 10.1039/c7cc07494h

    42. [42]

      Miao, J.; Meng, B.; Liu, J.; Wang, L. Chem. Commun. 2018, 54, 303. doi: 10.1039/c7cc08497h  doi: 10.1039/c7cc08497h

    43. [43]

      Liao, S. H.; Huo, H. J.; Cheng, Y. S.; Chen, S. A. Adv. Mater. 2013, 25, 4766. doi: 10.1002/adma.201301476  doi: 10.1002/adma.201301476

    44. [44]

      Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Leong, W. L.; Ke, L.; Bazan, G. C.; Heeger, A. J. ACS Nano 2013, 7, 4569. doi: 10.1021/nn401267s  doi: 10.1021/nn401267s

    45. [45]

      Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Adv. Mater. 2007, 19, 1551.doi: 10.1002/adma.200601093  doi: 10.1002/adma.200601093

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    6. [6]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    7. [7]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(7)
  • Abstract views(328)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return