Citation: LEI Qun, ZHANG Yurong, LUO Jianhui, HAN Rongcheng, GENG Xiangfei, Lü Xiaodong, LIU Yan, WANG Yuan. Method for Evaluating Stability of Highly Concentrated Emulsion and Its Application[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 415-421. doi: 10.3866/PKU.WHXB201803141 shu

Method for Evaluating Stability of Highly Concentrated Emulsion and Its Application

  • Corresponding author: WANG Yuan, wangy@pku.edu.cn
  • Received Date: 11 February 2018
    Revised Date: 7 March 2018
    Accepted Date: 7 March 2018
    Available Online: 14 April 2018

    Fund Project: the PetroChina Scientific Research and Technology Development Project 2014A-1001The project was supported by the PetroChina Scientific Research and Technology Development Project (2014A-1001) and the National Key Research and Development Program of China (2016YFE0118700)the National Key Research and Development Program of China 2016YFE0118700

  • The average diameter and size distribution of dispersed-phase droplets are important factors affecting the properties of emulsions, and the changes in these parameters with time and environment can be used to evaluate the emulsion stability. Traditional size characterization methods such as dynamic light scattering (DLS) are not applicable to highly concentrated emulsions. Herein, we report an imaging-based method to measure the droplet size in highly concentrated emulsions. This method comprises three steps: 1) emulsions are labeled with a fluorescent dye, 2) three optical slices with a certain distance between two adjacent focal plans are measured sequentially via confocal laser scanning microscopy, 3) the sizes of dispersed-phase droplets are determined from the apparent diameters of droplets in the optical slices. When the apparent diameter of a droplet in the three optical slices increases or decreases monotonically, droplet diameter is calculated according to the following equations: DC1–2 = {D22 +[(D12D22)/4δz + δz]2}1/2 or DC2–3 = {D32 + [(D22D32)/4δz + δz]2}1/2, where D1, D2, D3 is the apparent diameter of the droplet measured from the consecutively-obtained optical slices 1−3, respectively; DC1–2 represents the calculated diameter of the droplet from the slices 1 and 2, and DC2–3 is that from the slices 2 and 3, and δz is the distance between two focal planes of the adjacent optical slices. To avoid an obvious interference from the droplet movement, we use the equation 2|DC1–2DC2–3|/(DC1–2 + DC2–3) = X, where a smaller X value indicates a less extent of movement during measurement, and that the calculated average diameter (DC1–2 + DC2–3)/2 is closer to the measured size of the droplet. The experimental results showed that when X was 15%, the difference between the calculated and measured diameters was about 10%. When X was less than 15%, the calculated average droplet diameter was adopted as an effective diameter. However, when the condition D1= D2D3 (or D3 = D2D1) was met, D2 was used as the effective droplet diameter. The present method combines the advantages of fluorescent labeling, double optical slices analysis, and a strategy for eliminating the error caused by droplet movement. The stability of highly concentrated emulsions (oil volume percentage: 60%−80%), prepared by mixing a crude oil model mixture containing n-decane, naphthaline, decalin, and tetraphenylporphyrin (92.3%, 4.1%, 3.6%, and 0.1‰ by mass, respectively) with aqueous solutions containing surfactants, was studied with the proposed method. The experimental results indicated that the present method allowed for the effective and accurate measurement of the anti-coalescence stability of emulsion dispersed-phase droplets. In contrast, the widely adopted "bottle test" method could not provide accurate information on the anti-coalescence stability of the dispersed phase droplets.
  • 加载中
    1. [1]

      Wong, S. F.; Lim, J. S.; Dol, S. S. J. Pet. Sci. Eng. 2015, 135, 498. doi: 10.1016/j.petrol.2015.10.006  doi: 10.1016/j.petrol.2015.10.006

    2. [2]

      Tadros, T. F. Applied Surfactants: Principles and Applications; Wiley-VCH: Weinheim, 2005; pp. 139–140.

    3. [3]

      Zhang, X. G.; Liu, J. X.; Wang, H. Y.; Wang, M. Y.; Fan, Z. J. Acta Phys. -Chim. Sin. 2010, 26 (3), 617.  doi: 10.3866/PKU.WHXB20100313

    4. [4]

      Martínez-Palou, R.; Cerón-Camacho, R.; Chávez, B.; Vallejo, A. A.; Villanueva-Negrete, D.; Castellanos, J.; Karamath, J.; Reyes, J.; Aburto, J. Fuel2013, 113, 407. doi: 10.1016/j.fuel.2013.05.094  doi: 10.1016/j.fuel.2013.05.094

    5. [5]

      da Fraga, A. K.; Oliveira, P. F.; Oliveira, L. F. S.; Magalhães, J.; Mansur, C. R. E. J. Appl. Polym. Sci. 2016, 133 (44), 44174 doi: 10.1002/app.44174  doi: 10.1002/app.44174

    6. [6]

      Jing, J. Q.; Sun, J.; Zhou, J.; Shen, X. Y.; Tan, J. T.; Li, X. M.; Zhang, L. P. J. Dispersion Sci. Technol. 2016, 37 (7), 980. doi: 10.1080/01932691.2015.1077454  doi: 10.1080/01932691.2015.1077454

    7. [7]

      Santos, D.; da Rocha, E. C. L.; Santos, R. L. M.; Cancelas, A. J.; Franceschi, E.; Santos, A. F.; Fortuny, M.; Dariva, C. Sep. Purif. Technol.2017, 189, 347. doi: 10.1016/j.seppur.2017.08.028  doi: 10.1016/j.seppur.2017.08.028

    8. [8]

      Less, S.; Vilagines, R. Fuel 2013, 109, 542. doi: 10.1016/j.fuel.2013.03.048  doi: 10.1016/j.fuel.2013.03.048

    9. [9]

      Koppel, D. E. J. Chem. Phys. 1972, 57, 4814. doi: 10.1063/1.1678153  doi: 10.1063/1.1678153

    10. [10]

      Zhang, L. F.; Ying, H.; Yan, S.; Zhan, N. N.; Guo, Y. S.; Fang, W. J. Fuel 2018, 211, 197. doi: 10.1016/j.fuel.2017.09.066  doi: 10.1016/j.fuel.2017.09.066

    11. [11]

      Xiang, N.; Lyu, Y.; Naesimhan, G. Food Hydrocolloids 2016, 52, 678. doi: 10.1016/j.foodhyd.2015.08.015  doi: 10.1016/j.foodhyd.2015.08.015

    12. [12]

      Philips, L. A.; Ruffner, D. B.; Cheong, F. C.; Blusewicz, J. M.; Kasimbeg, P.; Waisi, B.; McCutcheon, J. R.; Grier, D. G. Water Res. 2017, 122, 431. doi: 10.1016/j.watres. 2017.06.006  doi: 10.1016/j.watres.2017.06.006

    13. [13]

      Chen, F.; Chen, Z. G.; Sun, H. Z.; Meng, F. X.; Ma, X. Y. Acta Phys.-Chim. Sin. 2016, 32(3), 763.  doi: 10.3866/PKU.WHXB201512111

    14. [14]

      Boxall, J. A.; Koh, C. A.; Sloan, E. D.; Sum, A. K.; Wu, D. T. Ind. Eng. Chem. Res. 2010, 49(3), 1412. doi: 10.1021/ie901228e

    15. [15]

      Greaves, D.; Boxall, J.; Mulligan, J.; Montesi, A.; Creek, J.; Sloan, E. D.; Koh, C. A. Chem. Eng. Sci. 2008, 63 (22), 5410. doi: 10.1016/j.ces.2008.07.023  doi: 10.1016/j.ces.2008.07.023

    16. [16]

      Muhaimin; Bodmeier, R. Polym. Int. 2017, 66(11), 1448. doi: 10.1002/pi.5436  doi: 10.1002/pi.5436

    17. [17]

      Hermanto, M. W.; Chow, P. S.; Tan, R. B. H. Cryst. Growth Des.2010, 10, 3668. doi: 10.1021/cg100533n  doi: 10.1021/cg100533n

    18. [18]

      Dave, K.; Luner, P. E.; Forness, C.; Baker, D.; Jankovsky, C.; Chen, S. AAPS PharmSciTech 2017, 19(1), 155. doi: 10.1208/s12249-017-0819-9  doi: 10.1208/s12249-017-0819-9

    19. [19]

      Katepalli, H.; Bose, A.; Hatton, T. A.; Blankschtein, D. Langmuir2016, 32, 10694. doi: 10.1021/acs.langmuir. 6b03289  doi: 10.1021/acs.langmuir.6b03289

    20. [20]

      Anjali, T. G.; Basavaraj, M. G. Phys. Chem. Chem. Phys. 2017, 19, 30790. doi: 10.1039/C7CP04665K  doi: 10.1039/C7CP04665K

    21. [21]

      Ruf, A.; Worlitschek, J.; Mazzotti, M. Part. Part. Syst. Charact.2000, 17, 167. doi: 10.1002/1521-4117(200012)17:4 < 167::AID-PPSC167 > 3.0.CO; 2-T  doi: 10.1002/1521-4117(200012)17:4<167::AID-PPSC167>3.0.CO;2-T

    22. [22]

      Abidin, M. I. I. Z.; Raman, A. A. A.; Nor, M. I. M. Ind. Eng. Chem. Res. 2013, 52, 16085. doi: 10.1021/ie401548z  doi: 10.1021/ie401548z

    23. [23]

      Amos, W. B.; White, J. G. Biol. Cell 2003, 95, 335. doi: 10.1016/S0248-4900(03)00078-9  doi: 10.1016/S0248-4900(03)00078-9

    24. [24]

      Mun, S.; Kim, J.; McClements, D. J.; Kim, Y. R.; Choi, Y. Food Chem.2017, 219, 297. doi: 10.1016/j.foodchem.2016. 09.158  doi: 10.1016/j.foodchem.2016.09.158

    25. [25]

      Iwai, M.; Yokono, M.; Kurokawa, K.; Ichihara, A.; Nakano, A. Sci. Rep. 2016, 6, 29940. doi: 10.1038/srep29940  doi: 10.1038/srep29940

    26. [26]

      Villaseñor, R.; Collin, L. J. Vis. Exp. 2017, 129, 1. doi: 10.3791/56407  doi: 10.3791/56407

    27. [27]

      Paddock, S. W. Biotechniques 1999, 27, 992.

    28. [28]

      Carlsson, K.; Danielsson, P. E.; Liljeborg, A.; Majlöf, L.; Lenz, R.; Åslund, N. Opt. Lett. 1985, 10, 53. doi: 10.1364/OL.10.000053  doi: 10.1364/OL.10.000053

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    10. [10]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    11. [11]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    14. [14]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    15. [15]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    18. [18]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    19. [19]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    20. [20]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

Metrics
  • PDF Downloads(11)
  • Abstract views(759)
  • HTML views(224)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return