Citation: YANG Ruilong, ZHANG Diyu, ZHU Kangwei, ZHOU Huanlin, YE Xiaoqiu, KLEYN Aart W., HU Yin, HUANG Qiang. In Situ Study of the Conversion Reaction of CO2 and CO2-H2 Mixtures in Radio Frequency Discharge Plasma[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 292-298. doi: 10.3866/PKU.WHXB201803121 shu

In Situ Study of the Conversion Reaction of CO2 and CO2-H2 Mixtures in Radio Frequency Discharge Plasma

  • Corresponding author: HU Yin, huyin_spc@163.com HUANG Qiang, qhuang1986@163.com
  • These authors contributed equally to this work
  • Received Date: 19 January 2018
    Revised Date: 5 March 2018
    Accepted Date: 5 March 2018
    Available Online: 12 March 2018

    Fund Project: the National Natural Science Foundation of China 21603202the National Natural Science Foundation of China 51561135013(PY2014-7-7, PY2014-7-11) PY2014-7-7The project was supported by the National Natural Science Foundation of China (21603202, 51561135013) and CAEP Incubation Project, China (PY2014-7-7, PY2014-7-11)(PY2014-7-7, PY2014-7-11) PY2014-7-11

  • Currently, worldwide attention is focused on controlling the continually increasing emissions of greenhouse gases, especially carbon dioxide. To this end, a number of investigations have been carried out to convert the carbon dioxide molecules into value-added chemicals. As carbon dioxide is thermodynamically stable, it is necessary to develop an efficient carbon dioxide utilization method for future scaled-up applications. Recently, several approaches, such as electrocatalysis, thermolysis, and non-thermal plasma, have been utilized to achieve carbon dioxide conversion. Among them, non-thermal plasma, which contains chemically active species such as high-energy electrons, ions, atoms, and excited gas molecules, has the potential to achieve high energy efficiency without catalysts near room temperature. Here, we used radio-frequency (RF) discharge plasma, which exhibits the non-thermal feature, to explore the decomposition behavior of carbon dioxide in non-thermal plasma. We studied the ionization and decomposition behaviors of CO2 and CO2-H2 mixtures in plasma at low gas pressure. The non-thermal plasma was realized by our custom-made inductively coupled RF plasma research system. The reaction products were analyzed by on-line quadrupole mass spectrometry (differentially pumped), while the plasma status was monitored using an in situ real-time optical emission spectrometer. Plasma parameters (such as the electron temperature and ion density), which can be tuned by utilizing different discharge conditions, played significant roles in the carbon dioxide dissociation process in non-thermal plasma. In this study, the conversion ratio and energy efficiency of pure carbon dioxide plasma were investigated at different values of power supply and gas flow. Subsequently, the effect of H2 on CO2 decomposition was studied with varying H2 contents. Results showed that the carbon dioxide molecules were rapidly ionized and partially decomposed into CO and oxygen in the RF field. With increasing RF power, the conversion ratio of carbon dioxide increased, while the energy efficiency decreased. A maximum conversion ratio of 77.6% was achieved. It was found that the addition of hydrogen could substantially reduce the time required to attain the equilibrium of the carbon dioxide decomposition reaction. With increasing H2 content, the conversion ratio of CO2 decreased initially and then increased. The ionization state of H2 and the consumption of oxygen owing to CO2 decomposition were the main reasons for the V-shape plot of the CO2 conversion ratio. In summary, this study investigates the influence of power supply, feed gas flow, and added hydrogen gas content, on the carbon dioxide decomposition behavior in non-thermal RF discharge plasma.
  • 加载中
    1. [1]

      Nishimura, Y.; Takenouchi, T. Ind. Eng. Chem. Fundam. 1976, 15 (4), 266. doi: 10.1021/i160060a007  doi: 10.1021/i160060a007

    2. [2]

      Lan, B. Y.; Shi, H. F. Acta Phys. -Chim. Sin. 2014, 30 (12), 2177.  doi: 10.3866/PKU.WHXB201409303

    3. [3]

      Bai, X. F.; Chen, W.; Wang, B. Y.; Feng, G. H.; Wei, W.; Jiao, Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33 (12), 2388.  doi: 10.3866/PKU.WHXB201706131

    4. [4]

      Chen, G. X; Georgieva, V.; Godfroid, T.; Snyders, R.; Delpoancke-Ogletree, M. P. Appl. Catal. B- Environ. 2016, 190, 115. doi: 10.1016/j.apcatb.2016.03.009  doi: 10.1016/j.apcatb.2016.03.009

    5. [5]

      Mei, D. H.; Zhu, X. B.; Wu, C. F.; Ashford, B.; Williams, P. T.; Tu, X. Appl. Catal. B- Environ. 2016, 182, 525. doi.org/10.1016/j.apcatb.2015.09.052  doi: 10.1016/j.apcatb.2015.09.052

    6. [6]

      Tao, X. M.; Bai, M. G.; Li, X.; Long, H. L.; Shang, S. Y.; Yin, Y. X.; Dai, X. Y. Prog. Energ. Combust. 2011, 37(2), 113. doi: 10.1016/j.pecs.2010.05.001  doi: 10.1016/j.pecs.2010.05.001

    7. [7]

      Nizio, M.; Albarazi, A.; Cavadias, S.; Amouroux, J.; Galvez, M. E.; Costa, P. D. Int. J. Hydrog. Energ. 2016, 41 (27), 11584. doi: 10.1016/j.ijhydene.2016.02.020  doi: 10.1016/j.ijhydene.2016.02.020

    8. [8]

      Wang, H.; Song, L. J.; Li, X. H.; Yue, L. M. Acta Phys. -Chim. Sin. 2015, 31 (7), 1406.  doi: 10.3866/PKU.WHXB201504272

    9. [9]

      Nguyen, H. H.; Kim, K. S. Catal. Today 2015, 256, 88. doi: 10.1016/j.cattod.2015.04.034  doi: 10.1016/j.cattod.2015.04.034

    10. [10]

      Huang, C. H.; Tan, C. S. Aerosol Air Qual. Res. 2014, 14 (2), 480. doi: 10.4209/aaqr.2013.10.0326  doi: 10.4209/aaqr.2013.10.0326

    11. [11]

      Wang, Y. Acta Phys. -Chim. Sin. 2017, 33 (5), 857.  doi: 10.3866/PKU.WHXB201703172

    12. [12]

      Buser, R. G.; Sullivan, J. J. J. Appl. Phys. 1970, 41 (2), 472. doi: 10.1063/1.1658700  doi: 10.1063/1.1658700

    13. [13]

      Xie, Z. ; Jogan, K. ; Chang, J. S. The Effect of Residential Time on the Reduction of CO2 from Combustion Flue Gases by a Corona Torch Reactor. In Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA, Oct. 7–12, 1990; IEEE: New York, NY, USA, 1990; pp. 809–814. doi: 10.1109/IAS.1990.152151

    14. [14]

      Spencer, L. F.; Gallimore, A. D. Plasma Chem. Plasma Proc. 2011, 31 (1), 79. doi: 10.1007/s11090-010-9273-0  doi: 10.1007/s11090-010-9273-0

    15. [15]

      Huang, Q.; Zhang, D. Y.; Wang, D. P.; Liu, K. Z.; Kleyn, A. W. J. Phys. D: Appl. Phys. 2017, 50, 294001. doi: 10.1088/1361-6463/aa754e  doi: 10.1088/1361-6463/aa754e

    16. [16]

      Zhu, A. M.; Zhang, X. L.; Gong, W. M.; Ruan, G. S. Environ. Sci. (Chin.) 1998, 19 (2), 20.  doi: 10.3321/j.issn:0250-3301.1998.02.005

    17. [17]

      Dai, B.; Gong, W. M.; Zhang, X. L.; Zhang, L.; He, R. Nat. Gas Chem. Ind. (Chin.) 2000, 25 (6), 11.

    18. [18]

      Dai, B.; Gong, W. M. China Environ. Sci. (Chin.) 1999, 19 (5), 410.  doi: 10.3321/j.issn:1000-6923.1999.05.007

    19. [19]

      Dobrea, S.; Mihaila, I.; Tiron, V.; Popa, G. Rom. Rep. Phys. 2014, 66 (4), 1147.
       

    20. [20]

      Tan, S. Y.; Yang, D. W. Nat. Gas Chem. Ind. (Chin.) 2008, 33, 23.

    21. [21]

      Zhao, H. Q. Plasma Chemistry and Processing; University of Science and Technology Press: Hefei, 1993; pp. 154–167.

    22. [22]

      Aleksandrov, N. L.; Kindysheva, S. V.; Kirpichnikov, A. A.; Kosarev, I. N.; Starikovskaia, S. M.; Starikovskii, A. Y. J. Phys. D: Appl. Phys. 2007, 40, 4493. doi: 10.1088/0022-3727/40/15/019  doi: 10.1088/0022-3727/40/15/019

    23. [23]

      Fridman, A. Plasma Chemistry, 1st ed.; Cambridge University Press: New York, NY, USA, 2008; pp. 259–317.

    24. [24]

      Zhang, J. H.; Sun, J. Z.; Gong, Y.; Wang, D. Z.; Ma, T. C.; Liu, Y.; Vacuum 2009, 83, 133. doi: 10.1016/j.vacuum.2008.03.046  doi: 10.1016/j.vacuum.2008.03.046

    25. [25]

      Hueso, J. L.; González-Elipe, A. R.; Cotrino, J.; Caballero, A. J. Phys. Chem. A 2005, 109 (22), 4930. doi: 10.1021/jp0502398  doi: 10.1021/jp0502398

    26. [26]

      Kossyi, I. A.; Kostinsky, A. Y.; Matveyev, A. A.; Silakov, V. P. Plasma Sources Sci. Technol. 1992, 1, 207. doi: 10.1088/0963-0252/1/3/011  doi: 10.1088/0963-0252/1/3/011

    27. [27]

      Ye, C.; Ning, Z. Y.; Jiang, F. M.; Wu, X. M.; Xin, Y. Diagnostic Principle and Technology of Low Temperature Plasma at Low Pressure; Science Publishing House: Beijing, 2010; pp. 193–200.

  • 加载中
    1. [1]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    2. [2]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    3. [3]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    4. [4]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    5. [5]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    8. [8]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    11. [11]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    12. [12]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    13. [13]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    14. [14]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    15. [15]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    16. [16]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    17. [17]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    18. [18]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    19. [19]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    20. [20]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

Metrics
  • PDF Downloads(8)
  • Abstract views(293)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return