Citation: YANG Huachao, BO Zheng, SHUAI Xiaorui, YAN Jianhua, CEN Kefa. Influence of Wettability on the Charging Dynamics of Electric Double-Layer Capacitors[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 200-207. doi: 10.3866/PKU.WHXB201803083 shu

Influence of Wettability on the Charging Dynamics of Electric Double-Layer Capacitors

  • Corresponding author: BO Zheng, bozh@zju.edu.cn
  • Received Date: 10 February 2018
    Revised Date: 5 March 2018
    Accepted Date: 6 March 2018
    Available Online: 8 January 2018

    Fund Project: the National Natural Science Foundation of China 51306159Zhejiang Provincial Natural Science Foundation, China LR17E060002The project was supported by the National Natural Science Foundation of China (51306159) and Zhejiang Provincial Natural Science Foundation, China (LR17E060002)

  • Electric double-layer capacitors (EDLCs) are advanced electrochemical devices that have attracted tremendous attention because of their high power density, ultra-fast charging/discharging rate, and superior lifespan. A major challenge is how to further improve their energy density. At present, a large number of research efforts are primarily focusing on engineering the morphology and microstructure of electrodes to achieve better performance, for example, enlarging the specific surface area and designing the pore size. More importantly, wettability plays a crucial role in maximizing the effective utilization and accessibility of electrode materials. However, its primary mechanisms/phenomena are still partially resolved. Here, we explore the effects of wettability on the charging dynamics of EDLCs using molecular dynamics (MD) simulations. Typically, hydrophobic graphene (GP) and hydrophilic copper (Cu) are employed as the electrode materials. Differential capacitances (CD) as a function of electrode potentials (ϕ) are computed by means of Poisson and Gaussian equation calculations. Simulation results show that during the charging process of EDLCs, the differential capacitances of hydrophobic GP are insensitive to the electrode potentials. However, superhydrophilic Cu electrode exhibits an asymmetric U-shaped CDϕ curve, in which the capacitance at the negative polarization can be ~5.77 times greater than that of the positive counterpart. Such an unusual behavior is obviously different with the conventional Gouy-Chapman-Stern theory (i.e., symmetric U-shaped), room temperature ionic liquids (i.e., camel-, or bell-shaped), and hydrophobic counterpart, which is closely correlated with the free energy barrier distributions. Compared with the positive polarization or hydrophobic case, the energy barriers near the negative hydrophilic electrodes are remarkably suppressed, which benefits ion populations at the interface and enables the convenient orientation or distribution of ions to shield the external electric fields from electrodes, thereby yielding higher differential capacitances. With differentiating the ion charge density, the as-obtained CDϕ curves are well resembled, quantitatively establishing the correlations between EDL microstructures and differential capacitances. Besides, we also point out that enhancing the wettability could significantly decrease the EDL thickness from ~1.0 nm (hydrophobic) to ~0.5 nm (hydrophilic). In the end, we demonstrate that wetting property also impacts a prominent role in the charge storage behavior of EDLCs, transforming the charging mechanism dominated by counter-ion adsorption and ion exchange (hydrophobic) to pure counter-ion adsorption (hydrophilic). The as-obtained insights highlight the significance of wettability in regulating charging dynamics and mechanisms, providing useful guidelines for precisely controlling the wetting property of electrode materials for advanced charge storage of EDLCs.
  • 加载中
    1. [1]

      Zhang, S.; Pan, N. Adv. Energy Mater. 2015, 5, 1401401. doi: 10.1002/aenm.201401401  doi: 10.1002/aenm.201401401

    2. [2]

      Li, X. Q.; Chang, L.; Zhao, S. L.; Hao, C. L.; Lu, C. G.; Zhu, Y. H.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2017, 33, 130.  doi: 10.3866/PKU.WHXB201609012

    3. [3]

      Liu, L.; Niu, Z.; Chen, J. Chem. Soc. Rev. 2016, 45, 4340. doi: 10.1039/C6CS00041J  doi: 10.1039/C6CS00041J

    4. [4]

      Wu, Z.; Zhang, X. B. Acta Phys. -Chim. Sin. 2017, 33, 305.  doi: 10.3866/PKU.WHXB201611012

    5. [5]

      Zhang, F.; Liu, T.; Li, M.; Yu, M.; Luo, Y.; Tong, Y.; Li, Y. Nano Lett. 2017, 17, 3097. doi: 10.1021/acs.nanolett.7b00533  doi: 10.1021/acs.nanolett.7b00533

    6. [6]

      Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760. doi: 10.1126/science.1132195  doi: 10.1126/science.1132195

    7. [7]

      Du, W. S.; Lu, Y. K.; Cai, Z. W.; Zhang, C. Acta Phys. -Chim. Sin. 2017, 33, 1828.  doi: 10.3866/PKU.WHXB201705089

    8. [8]

      Liu, D.; Shen, J.; Li, Y. J.; Liu, N. P.; Liu, B. Acta Phys. -Chim. Sin. 2012, 28, 843.  doi: 10.3866/PKU.WHXB201202172

    9. [9]

      Qi, J. L.; Wang, X.; Lin, J. H.; Zhang, F.; Feng, J. C.; Fei, W. D. Nanoscale 2015, 7, 3675. doi: 10.1039/c4nr07284g  doi: 10.1039/c4nr07284g

    10. [10]

      Ye, J. S.; Liu, X.; Cui, H. F.; Zhang, W. D.; Sheu, F. S.; Lim, T. M. Electrochem. Commun. 2005, 7, 249. doi: 10.1016/j.elecom.2005.01.008  doi: 10.1016/j.elecom.2005.01.008

    11. [11]

      Zhao, J.; Lai, H.; Lyu, Z.; Jiang, Y.; Xie, K.; Wang, X.; Wu, Q.; Yang, L.; Jin, Z.; Ma, Y.; et al. Adv. Mater. 2015, 27, 3541. doi: 10.1002/adma.201500945  doi: 10.1002/adma.201500945

    12. [12]

      Qi, J. L.; Lin, J. H.; Wang, X.; Guo, J. L.; Xue, L. F.; Feng, J. C.; Fei, W. D. Nano Energy 2016, 26, 657. doi: 10.1016/j.nanoen.2016.05.036  doi: 10.1016/j.nanoen.2016.05.036

    13. [13]

      Kondrat, S.; Wu, P.; Qiao, R.; Kornyshev, A. A. Nat. Mater. 2014, 13, 387. doi: 10.1038/nmat3916  doi: 10.1038/nmat3916

    14. [14]

      Kondrat, S.; Kornyshev, A. A. Nanoscale Horiz. 2016, 1, 45. doi: 10.1039/C5NH00004A  doi: 10.1039/C5NH00004A

    15. [15]

      Cheng, L.; Xian, K.; Honglai, L.; Jianzhong, W. J. Phys.: Condens. Matter 2016, 28, 464008. doi: 10.1088/0953-8984/28/46/464008  doi: 10.1088/0953-8984/28/46/464008

    16. [16]

      Cheng, L.; Honglai, L.; Douglas, H.; Jianzhong, W. J. Phys.: Condens. Matter 2016, 28, 414005. doi: 10.1088/0953-8984/28/41/414005  doi: 10.1088/0953-8984/28/41/414005

    17. [17]

      Burt, R.; Birkett, G.; Zhao, X. S. Phys. Chem. Chem. Phys. 2014, 16, 6519. doi: 10.1039/C3CP55186E  doi: 10.1039/C3CP55186E

    18. [18]

      Feng, G.; Qiao, R.; Huang, J.; Sumpter, B. G.; Meunier, V. ACS Nano 2010, 4, 2382. doi: 10.1021/nn100126w  doi: 10.1021/nn100126w

    19. [19]

      Yang, H.; Zhang, X.; Yang, J.; Bo, Z.; Hu, M.; Yan, J.; Cen, K. J. Phys. Chem. Lett. 2016, 153. doi: 10.1021/acs.jpclett.6b02659  doi: 10.1021/acs.jpclett.6b02659

    20. [20]

      Bo, Z.; Yang, H.; Zhang, S.; Yang, J.; Yan, J.; Cen, K. Sci. Rep. 2015, 5, 14652. doi: 10.1038/srep14652  doi: 10.1038/srep14652

    21. [21]

      Yang, H.; Yang, J.; Bo, Z.; Zhang, S.; Yan, J.; Cen, K. J. Power Sources 2016, 324, 309. doi: 10.1016/j.jpowsour.2016.05.072  doi: 10.1016/j.jpowsour.2016.05.072

    22. [22]

      Yang, H.; Yang, J.; Bo, Z.; Chen, X.; Shuai, X.; Kong, J.; Yan, J.; Cen, K. J. Phys. Chem. Lett. 2017, 3703. doi: 10.1021/acs.jpclett.7b01525  doi: 10.1021/acs.jpclett.7b01525

    23. [23]

      Raj, R.; Maroo, S. C.; Wang, E. N. Nano Lett. 2013, 13, 1509. doi: 10.1021/nl304647t  doi: 10.1021/nl304647t

    24. [24]

      Wang, S.; Zhang, Y.; Abidi, N.; Cabrales, L. Langmuir 2009, 25, 11078. doi: 10.1021/la901402f  doi: 10.1021/la901402f

    25. [25]

      Kalluri, R. K.; Ho, T. A.; Biener, J.; Biener, M. M.; Striolo, A. J. Phys. Chem. C 2013, 117, 13609. doi: 10.1021/jp4002127  doi: 10.1021/jp4002127

    26. [26]

      Qiu, Y.; Chen, Y. J. Phys. Chem. C 2015, 119, 23813. doi: 10.1021/acs.jpcc.5b06401  doi: 10.1021/acs.jpcc.5b06401

    27. [27]

      Cheng, A.; Steele, W. A. J. Chem. Phys. 1990, 92, 3858. doi: 10.1063/1.458562  doi: 10.1063/1.458562

    28. [28]

      Yang, H.; Bo, Z.; Yang, J.; Kong, J.; Chen, X.; Yan, J.; Cen, K. ChemElectroChem 2017, 4, 2966. doi: 10.1002/celc.201700733  doi: 10.1002/celc.201700733

    29. [29]

      Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269. doi: 10.1021/j100308a038  doi: 10.1021/j100308a038

    30. [30]

      Striolo, A. Nano Lett. 2006, 6, 633. doi: 10.1021/nl052254u  doi: 10.1021/nl052254u

    31. [31]

      Liu, L.; Zhao, J.; Yin, C. Y.; Culligan, P. J.; Chen, X. Phys. Chem. Chem. Phys. 2009, 11, 6520. doi: 10.1039/B905641F  doi: 10.1039/B905641F

    32. [32]

      Wander, M. C. F.; Shuford, K. L. J. Phys. Chem. C 2010, 114, 20539. doi: 10.1021/jp104972e  doi: 10.1021/jp104972e

    33. [33]

      Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039  doi: 10.1006/jcph.1995.1039

    34. [34]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5  doi: 10.1016/0263-7855(96)00018-5

    35. [35]

      Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637. doi: 10.1063/1.442716  doi: 10.1063/1.442716

    36. [36]

      Zhan, C.; Zhang, Y.; Cummings, P. T.; Jiang, D. E. Phys. Chem. Chem. Phys. 2016, 18, 4668. doi: 10.1039/C5CP06952A  doi: 10.1039/C5CP06952A

    37. [37]

      Sha, M.; Dou, Q.; Luo, F.; Zhu, G.; Wu, G. ACS Appl. Mater. Interfaces 2014, 6, 12556. doi: 10.1021/am502413m  doi: 10.1021/am502413m

    38. [38]

      Feng, G.; Zhang, J. S.; Qiao, R. J. Phys. Chem. C 2009, 113, 4549. doi: 10.1021/jp809900w  doi: 10.1021/jp809900w

    39. [39]

      Xu, K.; Ji, X.; Chen, C.; Wan, H.; Miao, L.; Jiang, J. Electrochim. Acta 2015, 166, 142. doi: 10.1016/j.electacta.2015.03.101  doi: 10.1016/j.electacta.2015.03.101

    40. [40]

      Jiang, G.; Cheng, C.; Li, D.; Liu, J. Z. Nano Res. 2016, 9, 174. doi: 10.1007/s12274-015-0978-5  doi: 10.1007/s12274-015-0978-5

    41. [41]

      Ho, T. A.; Striolo, A. J. Chem. Phys. 2013, 139, 204708. doi: 10.1063/1.4833316  doi: 10.1063/1.4833316

    42. [42]

      Feng, G. A.; Qiao, R.; Huang, J. S.; Sumpter, B. G.; Meunier, V. J. Phys. Chem. C 2010, 114, 18012. doi: 10.1021/jp107125m  doi: 10.1021/jp107125m

    43. [43]

      Huang, J. S.; Sumpter, B. G.; Meunier, V. Chem. -Eur. J. 2008, 14, 6614. doi: 10.1002/chem.200800639  doi: 10.1002/chem.200800639

    44. [44]

      Huang, J.; Sumpter, B. G.; Meunier, V. Angew. Chem. Int. Ed. 2008, 47, 520. doi: 10.1002/anie.200703864  doi: 10.1002/anie.200703864

    45. [45]

      Merlet, C.; Salanne, M.; Rotenberg, B.; Madden, P. A. Electrochim. Acta 2013, 101, 262. doi: 10.1016/j.electacta.2012.12.107  doi: 10.1016/j.electacta.2012.12.107

    46. [46]

      Lynden-Bell, R. M.; Frolov, A. I.; Fedorov, M. V. Phys. Chem. Chem. Phys. 2012, 14, 2693. doi: 10.1039/C2CP23267G  doi: 10.1039/C2CP23267G

    47. [47]

      Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. J. Am. Chem. Soc. 2016, 138, 5731. doi: 10.1021/jacs.6b02115  doi: 10.1021/jacs.6b02115

    48. [48]

      Forse, A. C.; Griffin, J. M.; Merlet, C.; Bayley, P. M.; Wang, H.; Simon, P.; Grey, C. P. J. Am. Chem. Soc. 2015, 137, 7231. doi: 10.1021/jacs.5b03958  doi: 10.1021/jacs.5b03958

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    20. [20]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

Metrics
  • PDF Downloads(17)
  • Abstract views(672)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return