Citation: XIA Huiyun, GENG Tong, ZHAO Xu, LI Fangfang, WANG Fengyan, GAO Lining. Preparation and Sensing Properties of Organic Gel Fluorescence Films Based on ZnS Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 337-344. doi: 10.3866/PKU.WHXB201803082 shu

Preparation and Sensing Properties of Organic Gel Fluorescence Films Based on ZnS Nanoparticles

  • Corresponding author: XIA Huiyun, xiahy@chd.edu.cn
  • Received Date: 31 January 2018
    Revised Date: 2 March 2018
    Accepted Date: 2 March 2018
    Available Online: 8 March 2018

    Fund Project: the National Natural Science Foundation of China 51202016Natural Science Basic Research Plan in Shaanxi Province, China 2017JQ2025Natural Science Basic Research Plan in Shaanxi Province, China 2017JQ2003the National Natural Science Foundation of China 51502021The project was supported by the National Natural Science Foundation of China (51202016, 51502021), Natural Science Basic Research Plan in Shaanxi Province, China (2017JQ2025, 2017JQ2003), Xi'an Science and Technology Planning Project, China (2017137SF/WM031)Xi'an Science and Technology Planning Project, China 2017137SF/WM031

  • Accurate and rapid detection of organic amines in the vapor phase is essential for various applications such as agricultural use, industrial and environmental testing, and food security. Supramolecular gels composed of cholesterol derivative-based low-molecular-mass gelators (LMMGs) have attracted considerable attention owing to their unique character and formation mechanisms. In this study, a ZnS-supramolecular organogel hybrid film for amine vapor sensors was reported. It must be pointed out that the method of preparation of hybrid films considered here is different from that of the ZnS-organogel hybrid films previously reported. Because the sensing performance of nanomaterials strongly depends on their nanostructures, it is expected that nanomaterials synthesized by different methods exhibit different nanostructures and ultimately different sensing properties. The luminescent ZnS nanoparticles were first prepared by the oil-water interface method, before being dispersed in an organic solution containing the LMMG. Finally, the aforementioned solution was casted onto the surface of a glass substrate to fabricate a ZnS-supramolecular organogel fluorescent hybrid film after drying at room temperature. Scanning electron microscopy observations revealed that the surface morphology of the hybrid film was uniform cross-linked nanofibers. Transmission electron microscopy results revealed that the average particle size of the obtained ZnS nanoparticles is about 200 nm. The crystal structure of the ZnS nanoparticles is cubic, as revealed by X-ray diffraction. The photoluminescence emission spectra of the ZnS-supramolecular organogel film were recorded for various quantities of ZnS loading; the maximum emission wavelength of the hybrid films hardly changed, indicating that the dispersity of the ZnS nanoparticles in the hybrids is very well. Because the film network formed by the gelator has a good confinement effect on the ZnS nanoparticles, the hybrid film exhibits stable luminescence performance. Sensing experiments showed that the hybrid films are sensitive to the existence of organic monoamine and diamine vapors, and the sensitivity improved as the dosage of ZnS nanoparticles was increased. The quenching mechanism was discussed by comparing the fluorescence lifetimes of the hybrid films in the presence of air and ethylenediamine (EDA) vapor. It was found that the sensing mechanism is mainly static quenching, with a very small amount of dynamic quenching. The sensing performances of the film for common volatile organic compounds were investigated with a detection limit of 10.13 ppm (1 ppm = 1 × 10-6, volume fraction) obtained for the EDA vapor. Reversible experiments indicated that the films have a good reversible response in the presence of EDA vapor. It is anticipated that this type of supramolecular organogel hybrid film could find applications in the monitoring of volatile organic amines in the areas of industry and environment.
  • 加载中
    1. [1]

      Gao, T.; Tillman, E. S.; Lewis N. S. Chem. Mater. 2005, 17, 2904. doi: 10.1021/cm049457o  doi: 10.1021/cm049457o

    2. [2]

      Wei, Q.; Parzuchowski, P.; Zhang, W.; Meyerhoff, M. E. Anal. Chem. 2003, 75, 332. doi: 10.1021/ac0205356  doi: 10.1021/ac0205356

    3. [3]

      Reviriego, F.; Navarro, P.; Garcia-Espana, E.; Albelda, M. T.; Frias, J. C.; Domenech, A.; Yunta, M. J. R.; Costa, R.; Orti, E. Org. Lett. 2008, 10, 5099. doi: 10.1021/ol801732t  doi: 10.1021/ol801732t

    4. [4]

      Che, Y. K.; Yang, X. M.; Loser, S.; Zang, L. Nano Lett. 2008, 8, 2219. doi: 10.1021/nl080761g  doi: 10.1021/nl080761g

    5. [5]

      Nohta, H.; Satozono, H.; Koiso, K.; Yoshida, H.; Ishida, J.; Yamaguchi, M. Anal. Chem. 2000, 72, 4199. doi: 10.1021/ac0002588  doi: 10.1021/ac0002588

    6. [6]

      Oberg, K. I.; Hodyss, R.; Beaucham, J. L. Sens. Actuators B 2006, 115, 79. doi: 10.1016/j.snb.2005.08.019  doi: 10.1016/j.snb.2005.08.019

    7. [7]

      Jin, Y.; Jang, J. W.; Lee, M. H.; Han, C. H. Clin. Chim. Acta 2006, 364, 260. doi: 10.1021/jf050484o  doi: 10.1021/jf050484o

    8. [8]

      Xia, H. Y.; He, G.; Peng, J. X.; Li, W. W.; Fang, Y. Appl. Surf. Sci. 2010, 256, 7270. doi: 10.1016/j.apsusc.2010.05.063  doi: 10.1016/j.apsusc.2010.05.063

    9. [9]

      Xia, H. Y.; He, G.; Gao, L. N.; Peng, J. X.; Fang, Y. Chem. J. Chin. Univ. 2010, 31, 1614.  doi: 10.1021/ja0269082

    10. [10]

      Wang, L.; Lu, D. F; Cheng, J.; Zhang, J., Qi, Z. M. Acta Phys. -Chim. Sin. 2017, 33, 1223.

    11. [11]

      Xia, H. Y.; Liu, G. Y.; Zhao, C.; Meng, X. J.; Li, F. F.; Wang, F. Y.; Duan, L.; Chen, H. X. RSC Adv. 2017, 7, 17264. doi: 10.1039/C7RA00556C  doi: 10.1039/C7RA00556C

    12. [12]

      Wu, H. F.; Chen, Y.; Xu, S. H.; Yan, Y. H.; Si, J. X.; Tan, Y. S. Acta Phys. -Chim. Sin. 2017, 33, 419.  doi: 10.3866/PKU.WHXB201610192

    13. [13]

      Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 6664. doi: 10.1021/ja00094a023  doi: 10.1021/ja00094a023

    14. [14]

      Shinkai, S.; Murata, K. J. Mater. Chem. 1998, 8, 485. doi: 10.1039/A704820C  doi: 10.1039/A704820C

    15. [15]

      Yoza, K.; Amanokura, N.; Ono, Y. Chem. Eur. J. 1999, 5, 2722. doi: 10.1002/(SICI)1521-3765(19990903)5:9<2722::AIDCHEM2722>3.0.CO;2-N  doi: 10.1002/(SICI)1521-3765(19990903)5:9<2722::AIDCHEM2722>3.0.CO;2-N

    16. [16]

      George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489. doi: 10.1002/chin.200645254  doi: 10.1002/chin.200645254

    17. [17]

      Jyothish, K.; Hariharan, M.; Ramaiah, D. Chem. Eur. J. 2007, 13, 5944. doi: 10.1002/chem.200700130  doi: 10.1002/chem.200700130

    18. [18]

      Xia, H. Y.; Peng, J. X.; Liu, K. Q.; Li, C.; Fang, Y. J. Phys. D: Appl. Phys. 2008, 41, 105405. doi: 10.1088/0022-3727/41/10/105405  doi: 10.1088/0022-3727/41/10/105405

    19. [19]

      Zou, Z.; Qiu, Y.; Xie, C.; Xu, J.; Luo, Y.; Wang, C.; Yan, H. J. Alloy. Compd. 2015, 645, 17. doi: 10.1016/j.jallcom.2015.04.20  doi: 10.1016/j.jallcom.2015.04.20

    20. [20]

      Xu, K.; Li, N.; Zeng, D.; Tian, S.; Zhang, S.; Hu, D.; Xie, C. ACS Appl. Mater. Interfaces 2015, 7, 11359. doi: 10.1021/acsami.5b01856  doi: 10.1021/acsami.5b01856

    21. [21]

      Gaiardo, A.; Fabbri, B.; Guidi, V.; Bellutti, P.; Giberti, A.; Gherardi, S.; Vanzetti, L.; Malagù, C.; Zonta, G. Sensors 2016, 16, 296. doi: 10.3390/s16030296  doi: 10.3390/s16030296

    22. [22]

      Fu, X.; Liu, J.; Wan, Y.; Zhang, X.; Meng, F.; Liu, J. J. Mater. Chem. 2012, 22, 17782. doi: 10.1039/C1JM14032A  doi: 10.1039/C1JM14032A

    23. [23]

      Peng, J. X.; Liu, K. Q.; Liu, J.; Zhang, Q. H.; Feng, X. L.; Fang, Y. Langmuir 2008, 24, 2992. doi: 10.1021/la703672u  doi: 10.1021/la703672u

    24. [24]

      Ghosh, G.; Naskar, M. K.; Patra, A. J. Opt. Mater. 2006, 28, 1047. doi: 10.1016/j.optmat.2005.06.003  doi: 10.1016/j.optmat.2005.06.003

    25. [25]

      Lippens, P. E.; Lanoo. M. Phys. Rev. B: Condens. Matter 1989, 39, 10935. doi: 10.1103/PhysRevB.39.10935  doi: 10.1103/PhysRevB.39.10935

    26. [26]

      Du, H. Y.; He, G.; Liu, T. H.; Ding, L. P.; Fang, Y. J. Photochem. Photobiol. A: Chem. 2010, 217, 356. doi: 10.1016/j.jphotochem. 2010.11.004  doi: 10.1016/j.jphotochem.2010.11.004

    27. [27]

      Lakowicz, J. R. Time-Resolved Energy Transfer and Conformational Distrbutions of Biopolymers, 3rd ed. ; Springer: USA, 1999. pp. 395-424.

    28. [28]

      Landes, C. F.; Braun, M.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 10554. doi: 10.1021/jp0118726  doi: 10.1021/jp0118726

    29. [29]

      Selmarten, D.; Jones, M.; Rumbles, G.; Yu, P.; Nedeljkovic, J.; Shaheen, S. J. Phys. Chem. B 2005, 109 (33), 15927. doi: 10.1021/jp0515479  doi: 10.1021/jp0515479

    30. [30]

      Lisensky, G. C.; Penn, R. L.; Murphy, C.; Eills, A. B. Science 1990, 248, 840. doi: 10.1126/science.248.4957.840  doi: 10.1126/science.248.4957.840

  • 加载中
    1. [1]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(4)
  • Abstract views(253)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return