Citation: DUAN Yuan, CHEN Mingshu, WAN Huilin. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1358-1365. doi: 10.3866/PKU.WHXB201803071 shu

Adsorption and Activation of O2 and CO on the Ni(111) Surface

  • Corresponding author: CHEN Mingshu, chenms@xmu.edu.cn
  • Received Date: 4 February 2018
    Revised Date: 1 March 2018
    Accepted Date: 2 March 2018
    Available Online: 7 December 2018

    Fund Project: the National Natural Science Foundation of China 21073149The project was supported by the National Natural Science Foundation of China (21073149, 21573180, 91545204)the National Natural Science Foundation of China 91545204the National Natural Science Foundation of China 21573180

  • Ni-based catalysts have been widely used in many important industrial heterogeneous processes such as hydrogenation and steam reforming owing to their sufficiently high activity yet significantly lower cost than that of alternative precious-metal-based catalysts. However, nickel catalysts are susceptible to deactivation. Understanding the adsorption and activation behavior of small molecules on the model catalyst surface is important to optimize the catalytic performance. Although many studies have been carried out in recent years, the initial oxidation process of nickel surface is still not fully understood, and the influence of the adsorption sequence of CO and O2 and their co-adsorption is controversial. In this study, the surface oxygen species on Ni(111) and the co-adsorption of CO and O2 were explored using high-resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES), and low energy electron diffraction (LEED). HREELS can provide useful information about the surface structure, surface-adsorbed species, adsorption sites, and interactions between surface oxygen species and CO on the surface. The results showed that there were two kinds of oxygen species after the oxidation of Ni(111), and the energy loss peaks at 54–58 meV were ascribed to surface chemisorbed oxygen species, and the peak at 69 meV to surface nickel oxide. The chemisorbed oxygen at low coverage displayed a LEED pattern of (2×2), revealing the formation of an ordered surface structure. As the amount of oxygen increased, the energy loss peak at 54 meV shifted to 58 meV. At an O2 partial pressure of 1×10-8 Torr (1 Torr = 133.32 Pa), the AES ratio of O/Ni remained almost unchanged after dosing 48 L, which indicated that the surface nickel oxide was relatively stable. The surface chemisorbed oxygen species was less stable, which could change to surface nickel oxide after annealing in vacuum. CO adsorbed on Ni(111) at room temperature with tri-hollow and a-top sites. Upon annealing in vacuum, a-top CO weakened first and then disappeared completely at 520 K, whereas tri-hollow CO was much more stable. The pre-adsorption of CO could suppress O2 adsorption and oxidation of the Ni(111) surface. The presence of oxygen could then gradually remove and replace CO with O2. The surface oxygen species preferred the tri-hollow sites, resulting in more a-top adsorbed CO during the co-adsorption of CO and oxygen. The surface chemisorbed oxygen species were more active and could react with CO at room temperature; however, the surface nickel oxide was less active, and could only be reduced at a higher temperature and higher partial pressure of CO.
  • 催化过程主要发生在催化剂的表面,包括反应物分子扩散、吸附、活化/解离、反应以及产物的脱附等过程。多相催化过程中多种吸附位或活性位共存,通常存在多种反应中间物种或表面物种,产物分布较广,表征信息复杂。表面科学技术可以为多相催化研究提供分子、原子水平的深入认识1-3。这类研究通常包含反应物分子与固体表面的相互作用、表面吸附物种间的相互作用、活性中心位的本质、表面缺陷位的作用、表面氧化物薄膜的结构和性质等4-8

    镍基催化剂在催化反应中具有广泛的应用和研究,尤其是在催化氧化、加氢等方面,如CO的甲烷化反应9-11和催化重整反应12-15,镍基催化剂具有高活性、低成本和储量丰富的优势。然而,镍基催化剂易积碳的缺点使催化剂容易失活。改善Ni催化剂性能的研究主要集中于镍与贵金属的合金、镍的分散度、碱金属掺杂和使用还原性载体等16-18。近期Yuan等人19使用时间分辨近常压X射线光电子能谱((TR)NAP-XPS)、LEED和扫描隧道显微镜(STM)等技术研究了二氧化碳-甲烷重整反应的氧物种,推测Ni-O物种具有本征的抗积碳性能,在一定条件下表面氧可作为中间体与解离的碳物种反应。另一方面,Zhao等人20发现表面Ni氧化物覆盖层和金属Ni之间的界面改变了Ni纳米颗粒的几何构型和电子结构,在光照下可以活化CO。

    虽然,近些年人们对于Ni表面O2、CO或H2等小分子的相互作用进行了一些研究21-23,但是镍表面氧化的初始过程仍未完全明确。受温度、氧气分压和基底原子排列取向的影响,Ni的氧化形成不同的表面氧化物,其CO吸附位点和CO氧化催化性能也不同24-28。详细探究催化剂活性表面的结构和表面物种可以为精确调控催化剂的性能提供重要依据。其次,由于贵金属和一些过渡金属的C-端吸附对于CO局部覆盖、其他共吸附物种(电子给体或受体)及吸附次序等非常敏感。可通过振动光谱研究表征出吸附态CO的许多特征29

    因此,为了进一步理解Ni的氧化反应的初始过程及Ni氧化后表面物种对于CO吸附和反应的影响,本文采用高分辨电子能量损失谱(HREELS)、俄歇电子能谱(AES)、低能电子衍射(LEED)等表征手段,考察了不同条件下暴露氧气时,Ni表面氧物种的变化,同时考察了Ni表面氧化物的生长条件以及与CO的相互作用。选择Ni(111)晶面,是因为这种紧密堆积平面具有较高的对称性,相较于Ni(110)和Ni(100)具有较低的活性。而且,Liu等人30, 31报道,Ni(111)面对于CO2重整或氢化都表现出较高的耐焦化性。

    实验在真空度优于2×10-9 Torr (1 Torr = 133.32 Pa)的条件下进行,真空腔体配有HREELS (LK5000,LK technologies,USA)、AES、LEED、离子枪(ion gun)。HREELS可以测定固体表面吸附原子和分子的振动信息,并可得出表面结构、吸附位等信息,灵敏度高。HREELS的电子束入射能量为7.254 eV,入射电子束和检测电子束与单晶表面法线夹角均为55°,分辨率为1.9–2.4 meV。在AES中,用Ni LMM (849 eV),O KLL (510 eV),C KLL (275 eV)的峰-峰高度求得表面Ni、O和C的含量。LEED用于观测表面结构。不同条件处理样品后,都是在气氛下降温后抽为超高真空状态,在室温下采集谱图。

    Ni(111)单晶样品通过钽丝固定在四维(XYZθ)的自制样品架上,采用电流直接加热的方式加热,通过点焊在样品后面的C-型热电偶(5%Re/95%W–26%Re/74%W)测温。室温氩离子蚀刻(pAr = 1×10-6 Torr,离子束能量(beam energy) = 1.2 keV,发射电流(emission current) = 20 mA)和1000 K退火重复循环清洁样品,通过几个氧化和还原循环消除碳污染物,直到杂质含量低于AES检测限(<1% ML)、出现清晰的LEED (1×1)衍射点。高纯度(>99.999%)的O2、CO等气体均为香港特殊气体有限公司产品,通过漏阀引入真空腔体。

    Ni(111)在不同氧气分压下,室温氧化5 min后,HREELS(图 1a)结果显示,表面先出现位于54 meV的能量损失峰并在增加氧气分压后蓝移至58 meV,相应的LEED图像呈现(2×2)结构(如图 1c插图),归属为表面化学吸附氧物种32;随着氧气分压的增大,位于69 meV的能量损失峰出现并逐渐增强,这一特征峰可归属为表面氧化镍33, 34。结合AES谱(图 1c)中O/Ni相对含量先快速增大后趋于平缓的变化,显示金属Ni表面活化氧速率较快,形成表面氧化物后,表面活化氧或氧往近表面的迁移的速度变慢。

    图 1

    图 1  (a) Ni(111)表面在不同氧气分压下室温氧化的HREELS图;(b) Ni(111)表面在室温氧气分压为1×10-8 Torr,不同暴露氧量的HREELS图;(c) O/Ni俄歇比值随着氧气分压的变化图(插图:Ni(111)表面氧气分压为1×10-8 Torr,室温氧化5 min后的LEED衍射图);(d)俄歇O/Ni比值在固定氧气分压为1×10-8 Torr随着暴氧量的变化图
    Figure 1.  (a) HREELS spectra of Ni(111) after exposing to oxygen with various pressure at room temperature (RT); (b) HREELS spectra of Ni(111) after exposing to different amount of O2 with pO2 = 1×10-8 Torr at RT; (c) O/Ni AES ratio as a function of the oxygen pressure (Inset: LEED pattern of Ni(111) after exposing to 1×10-8 Torr O2 for 5 min at RT); (d) O/Ni AES ratio as a function of the oxygen exposing amount with pO2 = 1×10-8 Torr.

    固定氧气分压为1×10-8 Torr,室温考察不同暴氧量的变化(图 1b)。当暴氧量达到48 L (1 L = 1×10-6 Torr·s)后,O/Ni俄歇比值(如图 1d)基本保持稳定,而且HREELS中对应的两种氧物种的能量损失峰的相对比值也基本不变。在放入84 L氧气后,将氧气分压增加到1×10-7 Torr再放入30 L的氧气,其O/Ni俄歇比值仍未变化。表明在室温较低氧气分压下NiO层形成之后,表面氧化物比较稳定,即钝化了Ni的表面,该实验结果与文献35报道结论一致。

    氧气分压为1×10-6 Torr,室温氧化5 min后的Ni(111)表面经不同温度真空退火(图 2a),HREELS谱图中位于58 meV的能量损失峰逐渐减弱至750 K退火后消失,该峰在室温重新暴露氧(氧气分压为1×10-6 Torr,5 min)后可以再次出现,且俄歇谱图(图 2b)中O/Ni俄歇比值回升,表明对应的表面氧物种较不稳定,温度升高后表面化学吸附氧物种转化为表面氧化镍,重新吸附氧气后表面O/Ni俄歇比值略高于初始室温氧化的表面O/Ni俄歇比值也说明了这一点。750 K退火后的LEED图像(图 2b插图)呈现清晰的六重对称衍射图,结合HREELS结果(图 2a)表明高温退火形成具有规整结构的表面氧化物36, 37。另外,谱图中位于457 meV的峰归属于表面羟基振动,该峰的出现可能是少量的污染所致,可以通过退火除去38

    图 2

    图 2  (a) Ni(111)表面室温氧化再不同温度真空退火后的HREELS谱图;(b) O/Ni俄歇比值随退火温度的变化(插图:氧气分压为1×10-6 Torr,室温氧化5 min,接着750 K退火后的LEED衍射图)
    Figure 2.  (a) HREELS spectra Ni(111) oxidized at room temperature then annealed at various temperatures in vacuum; (b) Auger ratio of O/Ni as a function of the annealing temperature (Inset: LEED pattern of the Ni(111) surface after exposing to 1×10-6 Torr O2 for 5 min at RT and following by annealing at 750 K in vacuum).

    为考察CO和O的共吸附,我们进而考察了室温下清洁Ni(111)表面吸附不同量CO的HREELS谱,如图 3a所示,234和253 meV的振动峰分别归属于C―O穴位吸附和端位吸附。当吸附量达到0.6 L时,两峰的相对强度不再发生明显变化,O/Ni和C/Ni俄歇比值变化趋于稳定,表明CO已达到吸附饱和。在一个简单的中心力模型中,预期Ni―CO伸缩频率随着配位数的减少而增加,表面法线与Ni―CO键之间的角度从三配位点到顶点降低,从而增加了垂直于表面的合力常数39。因此,位于46 meV的振动峰对应于穴位吸附Ni―C键,而58 meV的振动峰对应于端位吸附Ni―C键。而且,由于配位金属原子数目不同,它们与O2的共吸附实验可能会有所不同。

    图 3

    图 3  (a) Ni(111)表面室温吸附CO的HREELS谱图;(b) Ni(111)表面室温饱和吸附CO后升温脱附的HREELS谱图
    Figure 3.  HREELS spectra for (a) CO absorption on Ni(111) at RT and (b) flashed to different temperatures.

    考察CO脱附随温度变化,HREELS谱(图 3b)显示位于58 meV的端式吸附Ni―C键振动峰和对应的位于253 meV的端式吸附的C―O振动峰,在真空退火过程中首先减弱,至520 K时完全消失。而穴位C―O吸附峰强度随温度升高而减弱并且向低频移动,这与CO在Ni表面的覆盖度有关,主要是由于Ni的d轨道电子对于CO反键轨道2π*的反馈作用随着覆盖度的增加而减弱。

    3.3.1   预吸附CO

    室温下将预吸附CO至饱和的Ni(111)表面暴露不同量的O2,HREELS谱(图 4ab)中可以看到CO吸附后的表面更易形成位于54 meV的表面氧物种,且对应于穴式吸附的位于46 meV的Ni―C键首先减弱,可能是表面化学吸附氧物种偏向于吸附在穴位,竞争吸附和/或反应,又因在暴露气相O2过程导致穴式吸附的CO首先被移去。对比只吸附氧和预吸附CO再吸附氧过程的O/Ni俄歇比值随暴氧量的关系(图 4c),只吸附氧的初期斜率明显大于预吸附CO再吸附氧的斜率,表明预吸附CO使得镍表面的氧化速度在初始阶段减缓,与HREELS观测到的结果一致。与Pt-族金属不同,预吸附CO在室温下难以被氧置换或反应移去,导致Pt-族金属上CO催化氧化通常需在较高温度下进行40

    图 4

    图 4  (a)、(b)饱和吸附CO后的Ni(111)表面吸附O2的HREELS谱图;(c) O2分别在饱和吸附CO表面与清洁表面吸附后O/Ni俄歇比值
    Figure 4.  (a), (b) HREELS spectra of O2 adsorbed on the Ni(111) surface with saturated CO; (c) AES ratio of O/Ni as a function of the O2 exposing amount.
    3.3.2   预吸附O2过程

    图 5a是Ni(111)表面室温吸附1.2 L O2在520 K闪退后,吸附CO的HREELS谱。与实验预期相同的是,位于54 meV的振动峰在低氧覆盖度出现,连续暴露CO,位于46、58、234和253 meV的振动峰出现,位于54 meV的振动峰逐渐减弱。位于46和253 meV的CO端式吸附的振动峰与清洁表面吸附CO相比增强。

    图 5

    图 5  (a) CO与预吸附1.2 L O2的Ni(111)表面作用的HREELS谱图;(b)预吸附不同量O2后再吸附6 L CO的HREELS谱图;(c) HREELS穴位与端位吸附CO峰强度比值与俄歇C/O比值的关系
    Figure 5.  HREELS spectra of (a) various amount of CO on Ni(111) surface after pre-adsorption of 1.2 L O2; (b) 6 L CO on the Ni(111) surface pre-adsorbed different amount of O2; (c) Plots of the ratio of the hollow CO/a-top CO and Auger ratio of C/O.

    为了进一步考察预吸附氧气的影响,室温下预吸附不同量的氧气后暴露6 L的CO。HREELS(图 5b)谱中位于234 meV的C―O穴位吸附强度随着暴氧量的增大逐渐减弱,位于253 meV的C―O端式吸附强度略有增强。表明预吸附氧抑制了CO分子在穴位的吸附,这可能是因氧在Ni(111)表面优先占据三重穴位。

    HREELS谱(图 5a)中可以看到位于54 meV的Ni表面氧物种相对含量在室温随着CO量增加有所减小,而且在升温后,镍表面氧物种减少至在光谱图中难以分辨,表明CO与表面化学吸附氧物种发生反应。另外,分析HREELS图谱中穴位吸附和端式吸附强度相对比值,也可发现表面CO的碳和表面总的氧的相对量影响CO在表面的吸附位(图 5c)。

    3.3.3   预吸附氧气后吸附CO,再吸附氧气过程

    考察了在O2、CO分压均为1×10-8 Torr时,预吸附3 L O2后,再吸附6 L CO的表面(如图 6曲线a)对氧的吸附活化作用。HREELS谱图(图 6)中连续加入两次3 L和6 L O2 (曲线b、c、d)时,穴位吸附与端位吸附CO强度均减弱,表明预吸附氧部分抑制CO在穴位吸附,再暴露氧气与不同吸附位上的CO作用没有区别。另外,插图中穴位吸附CO和端位吸附CO相对比值和表面俄歇碳和氧相对量的关系和图 5c的结果一致。

    图 6

    图 6  Ni(111)表面预吸附氧气后再吸附CO的表面对氧吸附的影响
    Figure 6.  HREELS spectra of co-adsorption of CO and O2 on Ni(111).

    最后加入6 L CO后,位于69 meV的峰明显减弱,位于233和253 meV的CO吸附峰再次出现(曲线e),表明曲线d表面并未被镍表面氧物种完全覆盖且可被CO替除。可能与文献中报道的Pt(111)表面相似41,预吸附氧气使得CO端位吸附增强,但是CO氧化反应发生在表面氧化物边界有关。

    3.3.4   表面氧化镍的CO还原考察

    在300 K,氧气分压为5×10-8 Torr下,形成表面氧化镍。如图 7所示,当CO分压为1×10-7 Torr,温度从300 K到550 K处理10 min并均降回到室温(曲线b、c、d),HREELS谱图峰强度和位置都没有明显变化,表明室温下CO难以吸附在氧化镍表面上,而且在550 K时也未能把表面氧化镍还原;在CO气氛下650 K时处理10 min,位于58 meV的表面吸附氧物种的能量损失峰明显减弱,位于69 meV的表面氧化镍的能量损失峰开始逐渐减弱,同时位于234和253 meV的CO吸附峰出现,直至表面被完全还原(曲线e、f、g),表明CO还原优先从表面吸附氧物种开始,表面氧化镍较难被CO还原。

    图 7

    图 7  表面氧化镍与CO在不同条件下作用的HREELS谱图
    Figure 7.  HREELS spectra of the reaction of CO with surface nickel oxide in different experimental conditions.

    确认临氧条件下Ni(111)表面存在的表面化学吸附氧和表面氧化镍两种氧物种,其中表面化学吸附氧经真空退火可以转化成表面氧化镍;表面化学吸附氧物种抑制CO在Ni(111)表面的穴位吸附,但对端位吸附影响不明显。另一方面,我们发现预吸附氧气表面再吸附CO时,表面C/O的相对比值对CO在表面穴位和端位的吸附位置有影响。表面化学吸附氧物种较易与CO反应生成CO2脱去,而表面氧化镍须在较高温度和较高CO分压下才能被CO还原。

    1. [1]

      Ertl, G. Angew. Chem. Int. Ed. 2008, 47 (19), 3524. doi: 10.1002/anie.200800480  doi: 10.1002/anie.200800480

    2. [2]

      Ertl, G. ; Knoezinger, H. ; Schueth, F. ; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed. ; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Vol. 8, pp. 1309–1310.

    3. [3]

      Chen, M. S. Acta Phys. -Chim. Sin. 2017, 33 (12), 2424.  doi: 10.3866/PKU.WHXB201707171

    4. [4]

      Beniya, A.; Ikuta, Y.; Isomura, N.; Hirata, H.; Watanabe, Y. ACS Catal. 2017, 7 (2), 1369. doi: 10.1021/acscatal.6b02714  doi: 10.1021/acscatal.6b02714

    5. [5]

      Netzer, F. P., Fortunelli, A. Oxide Materials at the Two-Dimensional Limit; Springer: Heidelberg, 2016; 234, pp. 119–142.

    6. [6]

      Schaub, R.; Thostrup, P.; Lopez, N.; Laegsgaard, E.; Stensgaard, I.; Norskov, J. K.; Besenbacher, F. Phys. Rev. Lett. 2001, 87 (26), 266104/1. doi:10.1103/PhysRevLett.87.266104  doi: 10.1103/PhysRevLett.87.266104

    7. [7]

      Kuhlenbeck, H.; Odoerfer, G.; Jaeger, R.; Xu, C.; Mull, T.; Baumeister, B.; Illing, G.; Menges, M.; Freund, H. J.; Weide, D.; Andresen, G.; Watson, G; Plummer, E. W. Vacuum 1990, 41 (1–3), 34. doi:10.1016/0042-207X(90)90263-X  doi: 10.1016/0042-207X(90)90263-X

    8. [8]

      Shao, S. M.; Xi, G. K.; Wang, J. R.; Li, S. L.; Yang, X. Z.; Wang, J. H.; Zhou, Z. Q.; He, T. X.; Yu, B. X. Acta Phys. -Chim. Sin. 1992, 8 (6), 767.  doi: 10.3866/PKU.WHXB19920610

    9. [9]

      Mills, G. A.; Steffgen, F. W. Catal. Rev. 1973, 8 (2), 159. doi: 10.1080/01614947408071860  doi: 10.1080/01614947408071860

    10. [10]

      Gao, J. J.; Wang, Y. L.; Ping, Y.; Hu, D. C.; Xu, G. W.; Gu, F. N.; Su, F. B. RSC Adv. 2012, 2 (6), 2358. doi: 10.1039/c2ra00632d  doi: 10.1039/c2ra00632d

    11. [11]

      Hu, D. C.; Gao, J. J.; Ping, Y.; Jia, L. H.; Gunawan, P.; Zhong, Z. Y.; Xu, G. W.; Gu, F. N.; Su, F. B. Ind. Eng. Chem. Res. 2012, 51 (13), 4875. doi: 10.1021/ie300049f  doi: 10.1021/ie300049f

    12. [12]

      Li, S. R.; Gong, J. L. Chem. Soc. Rev. 2014, 43 (21), 7245. doi: 10.1039/C4CS00223G  doi: 10.1039/C4CS00223G

    13. [13]

      Wang, Y.; Yao, L.; Wang, S. H.; Mao, D. H.; Hu, C. W. Fuel Process. Technol. 2018, 169, 199. doi: 10.1016/j.fuproc.2017.10.007  doi: 10.1016/j.fuproc.2017.10.007

    14. [14]

      Abdullah, B.; Ghani, N. A. A.; Vo, D. V. N. J. Cleaner Prod. 2017, 162, 170. doi: 10.1016/j.jclepro.2017.05.176  doi: 10.1016/j.jclepro.2017.05.176

    15. [15]

      Li, C. L.; Fu, Y. L.; Bian, G. Z. Acta Phys. -Chim. Sin. 2003, 19 (10), 902.  doi: 10.3866/PKU.WHXB20031004

    16. [16]

      Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. ChemCatChem 2011, 3 (3), 529. doi: 10.1002/cctc.201000358  doi: 10.1002/cctc.201000358

    17. [17]

      Trimm, D. L. Catal. Today 1997, 37 (3), 233. doi: 10.1016/S0920-5861(97)00014-X  doi: 10.1016/S0920-5861(97)00014-X

    18. [18]

      Chen, C. S.; Lin, J. H.; You, J. H.; Yang, K. H. J. Phys. Chem. A 2010, 114 (11), 3773. doi: 10.1021/jp904434e  doi: 10.1021/jp904434e

    19. [19]

      Yuan, K. D.; Zhong, J. Q.; Zhou, X.; Xu, L. L.; Bergman, S. L.; Wu, K.; Xu, G. Q.; Bernasek, S. L.; Li, H. X.; Chen, W. ACS Catal. 2016, 6 (7), 4330. doi: 10.1021/acscatal.6b00357  doi: 10.1021/acscatal.6b00357

    20. [20]

      Zhao, Y. F.; Zhao, B.; Liu, J. J.; Chen, G. B.; Gao, R.; Yao, S. Y.; Li, M. Z.; Zhang, Q. H.; Gu, L.; Xie, J. L.; Wen, X. D.; Wu, L. Z.; Tung, C. H.; Ma, D.; Zhang, T. R. Angew. Chem. Int. Ed. 2016, 55 (13), 4215. doi: 10.1002/anie.201511334  doi: 10.1002/anie.201511334

    21. [21]

      Oku, M.; Brundle, C. R. J. Vac. Sci. Technol. 1982, 20 (3), 532. doi: 10.1116/1.571424  doi: 10.1116/1.571424

    22. [22]

      Park, R. L.; Farnsworth, H. E. J. Chem. Phys. 1964, 40 (8), 2354. doi: 10.1063/1.1725514  doi: 10.1063/1.1725514

    23. [23]

      Saiki, R.; Kaduwela, A.; Osterwalder, J.; Sagurton, M.; Fadley, C. S.; Brundle, C. R. J. Vac. Sci. Technol. A 1987, 5 (4, Pt. 1), 932. doi: 10.1116/1.574299  doi: 10.1116/1.574299

    24. [24]

      Beckerle, J. D.; Yang, Q. Y.; Johnson, A. D.; Ceyer, S. T. Surf. Sci. 1988, 195 (1), 77. doi: 10.1016/0039-6028(88)90781-9  doi: 10.1016/0039-6028(88)90781-9

    25. [25]

      Munoz-Marquez, M. A.; Tanner, R. E.; Woodruff, D. P. Surf. Sci. 2004, 565 (1), 1. doi: 10.1016/j.susc.2004.06.204  doi: 10.1016/j.susc.2004.06.204

    26. [26]

      Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang, Y. Y.; Jiang, Z.; Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133 (6), 1978. doi: 10.1021/ja109483a  doi: 10.1021/ja109483a

    27. [27]

      Chiarello, G.; Formoso, V.; Infusino, E.; Marino, A.; Agostino, R. G.; Colavita, E. Surf. Sci. 2007, 601 (1), 104. doi: 10.1016/j.susc.2006.09.010  doi: 10.1016/j.susc.2006.09.010

    28. [28]

      Politano, A.; Chiarello, G. J. Phys. Chem. C 2011, 115 (28), 13541. doi: 10.1021/jp202212a  doi: 10.1021/jp202212a

    29. [29]

      Politano, A.; Chiarello, G. Vib. Spectrosc. 2011, 55 (2), 295. doi: 10.1016/j.vibspec.2010.12.010  doi: 10.1016/j.vibspec.2010.12.010

    30. [30]

      Zhao, B. R.; Yan, X. L.; Zhou, Y.; Liu, C. J. Ind. Eng. Chem. Res. 2013, 52 (24), 8182. doi: 10.1021/ie400688y  doi: 10.1021/ie400688y

    31. [31]

      Pan, Y. X.; Liu, C. J.; Shi, P. J. Power Sources 2008, 176 (1), 46. doi: 10.1016/j.jpowsour.2007.10.039  doi: 10.1016/j.jpowsour.2007.10.039

    32. [32]

      Chen, J. G.; Weisel, M. D.; Hall, R. B. Surf. Sci. 1991, 250 (1–3), 159. doi:10.1016/0039-6028(91)90718-8  doi: 10.1016/0039-6028(91)90718-8

    33. [33]

      Tyuliev, G. T.; Kostov, K. L. Phys. Rev. B 1999, 60 (4), 2900. doi: 10.1103/PhysRevB.60.2900  doi: 10.1103/PhysRevB.60.2900

    34. [34]

      Langell, M. A.; Nassir, M. H. J. Phys. Chem. 1995, 99 (12), 4162. doi: 10.1021/j100012a042  doi: 10.1021/j100012a042

    35. [35]

      Lambers, E. S.; Dykstal, C. N.; Seo, J. M.; Rowe, J. E.; Holloway, P. H. Oxid. Met. 1996, 45 (3/4), 301. doi: 10.1007/BF01046987  doi: 10.1007/BF01046987

    36. [36]

      Kitakatsu, N.; Maurice, V.; Marcus, P. Surf. Sci. 1998, 411 (1/2), 215. doi: 10.1016/S0039-6028(98)00372-0  doi: 10.1016/S0039-6028(98)00372-0

    37. [37]

      Kitakatsu, N.; Maurice, V.; Hinnen, C.; Marcus, P. Surf. Sci. 1998, 407 (1–3), 36. doi: 10.1016/S0039-6028(98)00089-2  doi: 10.1016/S0039-6028(98)00089-2

    38. [38]

      Rohr, F.; Wirth, K.; Libuda, J.; Cappus, D.; Baeumer, M.; Freund, H. J. Surf. Sci. 1994, 315 (1–2), L977. doi: 10.1016/0039-6028(94)90529-0  doi: 10.1016/0039-6028(94)90529-0

    39. [39]

      Erley, W.; Ibach, H.; Lehwald, S.; Wagner, H. Surf. Sci. 1979, 83 (2), 585. doi: 10.1016/0039-6028(79)90065-7  doi: 10.1016/0039-6028(79)90065-7

    40. [40]

      Chen, M. S.; Zheng, Y. P.; Wan, H. L. Top. Catal. 2013, 56 (15–17), 1299. doi: 10.1007/s11244-013-0140-0  doi: 10.1007/s11244-013-0140-0

    41. [41]

      Ertl, G. J. Mol. Catal. A-Chem. 2002, 182 (1), 10. doi: 10.1016/S1381-1169(01)00460-5  doi: 10.1016/S1381-1169(01)00460-5

    1. [1]

      Ertl, G. Angew. Chem. Int. Ed. 2008, 47 (19), 3524. doi: 10.1002/anie.200800480  doi: 10.1002/anie.200800480

    2. [2]

      Ertl, G. ; Knoezinger, H. ; Schueth, F. ; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed. ; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Vol. 8, pp. 1309–1310.

    3. [3]

      Chen, M. S. Acta Phys. -Chim. Sin. 2017, 33 (12), 2424.  doi: 10.3866/PKU.WHXB201707171

    4. [4]

      Beniya, A.; Ikuta, Y.; Isomura, N.; Hirata, H.; Watanabe, Y. ACS Catal. 2017, 7 (2), 1369. doi: 10.1021/acscatal.6b02714  doi: 10.1021/acscatal.6b02714

    5. [5]

      Netzer, F. P., Fortunelli, A. Oxide Materials at the Two-Dimensional Limit; Springer: Heidelberg, 2016; 234, pp. 119–142.

    6. [6]

      Schaub, R.; Thostrup, P.; Lopez, N.; Laegsgaard, E.; Stensgaard, I.; Norskov, J. K.; Besenbacher, F. Phys. Rev. Lett. 2001, 87 (26), 266104/1. doi:10.1103/PhysRevLett.87.266104  doi: 10.1103/PhysRevLett.87.266104

    7. [7]

      Kuhlenbeck, H.; Odoerfer, G.; Jaeger, R.; Xu, C.; Mull, T.; Baumeister, B.; Illing, G.; Menges, M.; Freund, H. J.; Weide, D.; Andresen, G.; Watson, G; Plummer, E. W. Vacuum 1990, 41 (1–3), 34. doi:10.1016/0042-207X(90)90263-X  doi: 10.1016/0042-207X(90)90263-X

    8. [8]

      Shao, S. M.; Xi, G. K.; Wang, J. R.; Li, S. L.; Yang, X. Z.; Wang, J. H.; Zhou, Z. Q.; He, T. X.; Yu, B. X. Acta Phys. -Chim. Sin. 1992, 8 (6), 767.  doi: 10.3866/PKU.WHXB19920610

    9. [9]

      Mills, G. A.; Steffgen, F. W. Catal. Rev. 1973, 8 (2), 159. doi: 10.1080/01614947408071860  doi: 10.1080/01614947408071860

    10. [10]

      Gao, J. J.; Wang, Y. L.; Ping, Y.; Hu, D. C.; Xu, G. W.; Gu, F. N.; Su, F. B. RSC Adv. 2012, 2 (6), 2358. doi: 10.1039/c2ra00632d  doi: 10.1039/c2ra00632d

    11. [11]

      Hu, D. C.; Gao, J. J.; Ping, Y.; Jia, L. H.; Gunawan, P.; Zhong, Z. Y.; Xu, G. W.; Gu, F. N.; Su, F. B. Ind. Eng. Chem. Res. 2012, 51 (13), 4875. doi: 10.1021/ie300049f  doi: 10.1021/ie300049f

    12. [12]

      Li, S. R.; Gong, J. L. Chem. Soc. Rev. 2014, 43 (21), 7245. doi: 10.1039/C4CS00223G  doi: 10.1039/C4CS00223G

    13. [13]

      Wang, Y.; Yao, L.; Wang, S. H.; Mao, D. H.; Hu, C. W. Fuel Process. Technol. 2018, 169, 199. doi: 10.1016/j.fuproc.2017.10.007  doi: 10.1016/j.fuproc.2017.10.007

    14. [14]

      Abdullah, B.; Ghani, N. A. A.; Vo, D. V. N. J. Cleaner Prod. 2017, 162, 170. doi: 10.1016/j.jclepro.2017.05.176  doi: 10.1016/j.jclepro.2017.05.176

    15. [15]

      Li, C. L.; Fu, Y. L.; Bian, G. Z. Acta Phys. -Chim. Sin. 2003, 19 (10), 902.  doi: 10.3866/PKU.WHXB20031004

    16. [16]

      Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. ChemCatChem 2011, 3 (3), 529. doi: 10.1002/cctc.201000358  doi: 10.1002/cctc.201000358

    17. [17]

      Trimm, D. L. Catal. Today 1997, 37 (3), 233. doi: 10.1016/S0920-5861(97)00014-X  doi: 10.1016/S0920-5861(97)00014-X

    18. [18]

      Chen, C. S.; Lin, J. H.; You, J. H.; Yang, K. H. J. Phys. Chem. A 2010, 114 (11), 3773. doi: 10.1021/jp904434e  doi: 10.1021/jp904434e

    19. [19]

      Yuan, K. D.; Zhong, J. Q.; Zhou, X.; Xu, L. L.; Bergman, S. L.; Wu, K.; Xu, G. Q.; Bernasek, S. L.; Li, H. X.; Chen, W. ACS Catal. 2016, 6 (7), 4330. doi: 10.1021/acscatal.6b00357  doi: 10.1021/acscatal.6b00357

    20. [20]

      Zhao, Y. F.; Zhao, B.; Liu, J. J.; Chen, G. B.; Gao, R.; Yao, S. Y.; Li, M. Z.; Zhang, Q. H.; Gu, L.; Xie, J. L.; Wen, X. D.; Wu, L. Z.; Tung, C. H.; Ma, D.; Zhang, T. R. Angew. Chem. Int. Ed. 2016, 55 (13), 4215. doi: 10.1002/anie.201511334  doi: 10.1002/anie.201511334

    21. [21]

      Oku, M.; Brundle, C. R. J. Vac. Sci. Technol. 1982, 20 (3), 532. doi: 10.1116/1.571424  doi: 10.1116/1.571424

    22. [22]

      Park, R. L.; Farnsworth, H. E. J. Chem. Phys. 1964, 40 (8), 2354. doi: 10.1063/1.1725514  doi: 10.1063/1.1725514

    23. [23]

      Saiki, R.; Kaduwela, A.; Osterwalder, J.; Sagurton, M.; Fadley, C. S.; Brundle, C. R. J. Vac. Sci. Technol. A 1987, 5 (4, Pt. 1), 932. doi: 10.1116/1.574299  doi: 10.1116/1.574299

    24. [24]

      Beckerle, J. D.; Yang, Q. Y.; Johnson, A. D.; Ceyer, S. T. Surf. Sci. 1988, 195 (1), 77. doi: 10.1016/0039-6028(88)90781-9  doi: 10.1016/0039-6028(88)90781-9

    25. [25]

      Munoz-Marquez, M. A.; Tanner, R. E.; Woodruff, D. P. Surf. Sci. 2004, 565 (1), 1. doi: 10.1016/j.susc.2004.06.204  doi: 10.1016/j.susc.2004.06.204

    26. [26]

      Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang, Y. Y.; Jiang, Z.; Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133 (6), 1978. doi: 10.1021/ja109483a  doi: 10.1021/ja109483a

    27. [27]

      Chiarello, G.; Formoso, V.; Infusino, E.; Marino, A.; Agostino, R. G.; Colavita, E. Surf. Sci. 2007, 601 (1), 104. doi: 10.1016/j.susc.2006.09.010  doi: 10.1016/j.susc.2006.09.010

    28. [28]

      Politano, A.; Chiarello, G. J. Phys. Chem. C 2011, 115 (28), 13541. doi: 10.1021/jp202212a  doi: 10.1021/jp202212a

    29. [29]

      Politano, A.; Chiarello, G. Vib. Spectrosc. 2011, 55 (2), 295. doi: 10.1016/j.vibspec.2010.12.010  doi: 10.1016/j.vibspec.2010.12.010

    30. [30]

      Zhao, B. R.; Yan, X. L.; Zhou, Y.; Liu, C. J. Ind. Eng. Chem. Res. 2013, 52 (24), 8182. doi: 10.1021/ie400688y  doi: 10.1021/ie400688y

    31. [31]

      Pan, Y. X.; Liu, C. J.; Shi, P. J. Power Sources 2008, 176 (1), 46. doi: 10.1016/j.jpowsour.2007.10.039  doi: 10.1016/j.jpowsour.2007.10.039

    32. [32]

      Chen, J. G.; Weisel, M. D.; Hall, R. B. Surf. Sci. 1991, 250 (1–3), 159. doi:10.1016/0039-6028(91)90718-8  doi: 10.1016/0039-6028(91)90718-8

    33. [33]

      Tyuliev, G. T.; Kostov, K. L. Phys. Rev. B 1999, 60 (4), 2900. doi: 10.1103/PhysRevB.60.2900  doi: 10.1103/PhysRevB.60.2900

    34. [34]

      Langell, M. A.; Nassir, M. H. J. Phys. Chem. 1995, 99 (12), 4162. doi: 10.1021/j100012a042  doi: 10.1021/j100012a042

    35. [35]

      Lambers, E. S.; Dykstal, C. N.; Seo, J. M.; Rowe, J. E.; Holloway, P. H. Oxid. Met. 1996, 45 (3/4), 301. doi: 10.1007/BF01046987  doi: 10.1007/BF01046987

    36. [36]

      Kitakatsu, N.; Maurice, V.; Marcus, P. Surf. Sci. 1998, 411 (1/2), 215. doi: 10.1016/S0039-6028(98)00372-0  doi: 10.1016/S0039-6028(98)00372-0

    37. [37]

      Kitakatsu, N.; Maurice, V.; Hinnen, C.; Marcus, P. Surf. Sci. 1998, 407 (1–3), 36. doi: 10.1016/S0039-6028(98)00089-2  doi: 10.1016/S0039-6028(98)00089-2

    38. [38]

      Rohr, F.; Wirth, K.; Libuda, J.; Cappus, D.; Baeumer, M.; Freund, H. J. Surf. Sci. 1994, 315 (1–2), L977. doi: 10.1016/0039-6028(94)90529-0  doi: 10.1016/0039-6028(94)90529-0

    39. [39]

      Erley, W.; Ibach, H.; Lehwald, S.; Wagner, H. Surf. Sci. 1979, 83 (2), 585. doi: 10.1016/0039-6028(79)90065-7  doi: 10.1016/0039-6028(79)90065-7

    40. [40]

      Chen, M. S.; Zheng, Y. P.; Wan, H. L. Top. Catal. 2013, 56 (15–17), 1299. doi: 10.1007/s11244-013-0140-0  doi: 10.1007/s11244-013-0140-0

    41. [41]

      Ertl, G. J. Mol. Catal. A-Chem. 2002, 182 (1), 10. doi: 10.1016/S1381-1169(01)00460-5  doi: 10.1016/S1381-1169(01)00460-5

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    8. [8]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    14. [14]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    15. [15]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    16. [16]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    17. [17]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(6)
  • Abstract views(694)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return