Citation: DUAN Yuan, CHEN Mingshu, WAN Huilin. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1358-1365. doi: 10.3866/PKU.WHXB201803071 shu

Adsorption and Activation of O2 and CO on the Ni(111) Surface

  • Corresponding author: CHEN Mingshu, chenms@xmu.edu.cn
  • Received Date: 4 February 2018
    Revised Date: 1 March 2018
    Accepted Date: 2 March 2018
    Available Online: 7 December 2018

    Fund Project: the National Natural Science Foundation of China 21073149The project was supported by the National Natural Science Foundation of China (21073149, 21573180, 91545204)the National Natural Science Foundation of China 91545204the National Natural Science Foundation of China 21573180

  • Ni-based catalysts have been widely used in many important industrial heterogeneous processes such as hydrogenation and steam reforming owing to their sufficiently high activity yet significantly lower cost than that of alternative precious-metal-based catalysts. However, nickel catalysts are susceptible to deactivation. Understanding the adsorption and activation behavior of small molecules on the model catalyst surface is important to optimize the catalytic performance. Although many studies have been carried out in recent years, the initial oxidation process of nickel surface is still not fully understood, and the influence of the adsorption sequence of CO and O2 and their co-adsorption is controversial. In this study, the surface oxygen species on Ni(111) and the co-adsorption of CO and O2 were explored using high-resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES), and low energy electron diffraction (LEED). HREELS can provide useful information about the surface structure, surface-adsorbed species, adsorption sites, and interactions between surface oxygen species and CO on the surface. The results showed that there were two kinds of oxygen species after the oxidation of Ni(111), and the energy loss peaks at 54–58 meV were ascribed to surface chemisorbed oxygen species, and the peak at 69 meV to surface nickel oxide. The chemisorbed oxygen at low coverage displayed a LEED pattern of (2×2), revealing the formation of an ordered surface structure. As the amount of oxygen increased, the energy loss peak at 54 meV shifted to 58 meV. At an O2 partial pressure of 1×10-8 Torr (1 Torr = 133.32 Pa), the AES ratio of O/Ni remained almost unchanged after dosing 48 L, which indicated that the surface nickel oxide was relatively stable. The surface chemisorbed oxygen species was less stable, which could change to surface nickel oxide after annealing in vacuum. CO adsorbed on Ni(111) at room temperature with tri-hollow and a-top sites. Upon annealing in vacuum, a-top CO weakened first and then disappeared completely at 520 K, whereas tri-hollow CO was much more stable. The pre-adsorption of CO could suppress O2 adsorption and oxidation of the Ni(111) surface. The presence of oxygen could then gradually remove and replace CO with O2. The surface oxygen species preferred the tri-hollow sites, resulting in more a-top adsorbed CO during the co-adsorption of CO and oxygen. The surface chemisorbed oxygen species were more active and could react with CO at room temperature; however, the surface nickel oxide was less active, and could only be reduced at a higher temperature and higher partial pressure of CO.
  • 加载中
    1. [1]

      Ertl, G. Angew. Chem. Int. Ed. 2008, 47 (19), 3524. doi: 10.1002/anie.200800480  doi: 10.1002/anie.200800480

    2. [2]

      Ertl, G. ; Knoezinger, H. ; Schueth, F. ; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed. ; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Vol. 8, pp. 1309–1310.

    3. [3]

      Chen, M. S. Acta Phys. -Chim. Sin. 2017, 33 (12), 2424.  doi: 10.3866/PKU.WHXB201707171

    4. [4]

      Beniya, A.; Ikuta, Y.; Isomura, N.; Hirata, H.; Watanabe, Y. ACS Catal. 2017, 7 (2), 1369. doi: 10.1021/acscatal.6b02714  doi: 10.1021/acscatal.6b02714

    5. [5]

      Netzer, F. P., Fortunelli, A. Oxide Materials at the Two-Dimensional Limit; Springer: Heidelberg, 2016; 234, pp. 119–142.

    6. [6]

      Schaub, R.; Thostrup, P.; Lopez, N.; Laegsgaard, E.; Stensgaard, I.; Norskov, J. K.; Besenbacher, F. Phys. Rev. Lett. 2001, 87 (26), 266104/1. doi:10.1103/PhysRevLett.87.266104  doi: 10.1103/PhysRevLett.87.266104

    7. [7]

      Kuhlenbeck, H.; Odoerfer, G.; Jaeger, R.; Xu, C.; Mull, T.; Baumeister, B.; Illing, G.; Menges, M.; Freund, H. J.; Weide, D.; Andresen, G.; Watson, G; Plummer, E. W. Vacuum 1990, 41 (1–3), 34. doi:10.1016/0042-207X(90)90263-X  doi: 10.1016/0042-207X(90)90263-X

    8. [8]

      Shao, S. M.; Xi, G. K.; Wang, J. R.; Li, S. L.; Yang, X. Z.; Wang, J. H.; Zhou, Z. Q.; He, T. X.; Yu, B. X. Acta Phys. -Chim. Sin. 1992, 8 (6), 767.  doi: 10.3866/PKU.WHXB19920610

    9. [9]

      Mills, G. A.; Steffgen, F. W. Catal. Rev. 1973, 8 (2), 159. doi: 10.1080/01614947408071860  doi: 10.1080/01614947408071860

    10. [10]

      Gao, J. J.; Wang, Y. L.; Ping, Y.; Hu, D. C.; Xu, G. W.; Gu, F. N.; Su, F. B. RSC Adv. 2012, 2 (6), 2358. doi: 10.1039/c2ra00632d  doi: 10.1039/c2ra00632d

    11. [11]

      Hu, D. C.; Gao, J. J.; Ping, Y.; Jia, L. H.; Gunawan, P.; Zhong, Z. Y.; Xu, G. W.; Gu, F. N.; Su, F. B. Ind. Eng. Chem. Res. 2012, 51 (13), 4875. doi: 10.1021/ie300049f  doi: 10.1021/ie300049f

    12. [12]

      Li, S. R.; Gong, J. L. Chem. Soc. Rev. 2014, 43 (21), 7245. doi: 10.1039/C4CS00223G  doi: 10.1039/C4CS00223G

    13. [13]

      Wang, Y.; Yao, L.; Wang, S. H.; Mao, D. H.; Hu, C. W. Fuel Process. Technol. 2018, 169, 199. doi: 10.1016/j.fuproc.2017.10.007  doi: 10.1016/j.fuproc.2017.10.007

    14. [14]

      Abdullah, B.; Ghani, N. A. A.; Vo, D. V. N. J. Cleaner Prod. 2017, 162, 170. doi: 10.1016/j.jclepro.2017.05.176  doi: 10.1016/j.jclepro.2017.05.176

    15. [15]

      Li, C. L.; Fu, Y. L.; Bian, G. Z. Acta Phys. -Chim. Sin. 2003, 19 (10), 902.  doi: 10.3866/PKU.WHXB20031004

    16. [16]

      Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. ChemCatChem 2011, 3 (3), 529. doi: 10.1002/cctc.201000358  doi: 10.1002/cctc.201000358

    17. [17]

      Trimm, D. L. Catal. Today 1997, 37 (3), 233. doi: 10.1016/S0920-5861(97)00014-X  doi: 10.1016/S0920-5861(97)00014-X

    18. [18]

      Chen, C. S.; Lin, J. H.; You, J. H.; Yang, K. H. J. Phys. Chem. A 2010, 114 (11), 3773. doi: 10.1021/jp904434e  doi: 10.1021/jp904434e

    19. [19]

      Yuan, K. D.; Zhong, J. Q.; Zhou, X.; Xu, L. L.; Bergman, S. L.; Wu, K.; Xu, G. Q.; Bernasek, S. L.; Li, H. X.; Chen, W. ACS Catal. 2016, 6 (7), 4330. doi: 10.1021/acscatal.6b00357  doi: 10.1021/acscatal.6b00357

    20. [20]

      Zhao, Y. F.; Zhao, B.; Liu, J. J.; Chen, G. B.; Gao, R.; Yao, S. Y.; Li, M. Z.; Zhang, Q. H.; Gu, L.; Xie, J. L.; Wen, X. D.; Wu, L. Z.; Tung, C. H.; Ma, D.; Zhang, T. R. Angew. Chem. Int. Ed. 2016, 55 (13), 4215. doi: 10.1002/anie.201511334  doi: 10.1002/anie.201511334

    21. [21]

      Oku, M.; Brundle, C. R. J. Vac. Sci. Technol. 1982, 20 (3), 532. doi: 10.1116/1.571424  doi: 10.1116/1.571424

    22. [22]

      Park, R. L.; Farnsworth, H. E. J. Chem. Phys. 1964, 40 (8), 2354. doi: 10.1063/1.1725514  doi: 10.1063/1.1725514

    23. [23]

      Saiki, R.; Kaduwela, A.; Osterwalder, J.; Sagurton, M.; Fadley, C. S.; Brundle, C. R. J. Vac. Sci. Technol. A 1987, 5 (4, Pt. 1), 932. doi: 10.1116/1.574299  doi: 10.1116/1.574299

    24. [24]

      Beckerle, J. D.; Yang, Q. Y.; Johnson, A. D.; Ceyer, S. T. Surf. Sci. 1988, 195 (1), 77. doi: 10.1016/0039-6028(88)90781-9  doi: 10.1016/0039-6028(88)90781-9

    25. [25]

      Munoz-Marquez, M. A.; Tanner, R. E.; Woodruff, D. P. Surf. Sci. 2004, 565 (1), 1. doi: 10.1016/j.susc.2004.06.204  doi: 10.1016/j.susc.2004.06.204

    26. [26]

      Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang, Y. Y.; Jiang, Z.; Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133 (6), 1978. doi: 10.1021/ja109483a  doi: 10.1021/ja109483a

    27. [27]

      Chiarello, G.; Formoso, V.; Infusino, E.; Marino, A.; Agostino, R. G.; Colavita, E. Surf. Sci. 2007, 601 (1), 104. doi: 10.1016/j.susc.2006.09.010  doi: 10.1016/j.susc.2006.09.010

    28. [28]

      Politano, A.; Chiarello, G. J. Phys. Chem. C 2011, 115 (28), 13541. doi: 10.1021/jp202212a  doi: 10.1021/jp202212a

    29. [29]

      Politano, A.; Chiarello, G. Vib. Spectrosc. 2011, 55 (2), 295. doi: 10.1016/j.vibspec.2010.12.010  doi: 10.1016/j.vibspec.2010.12.010

    30. [30]

      Zhao, B. R.; Yan, X. L.; Zhou, Y.; Liu, C. J. Ind. Eng. Chem. Res. 2013, 52 (24), 8182. doi: 10.1021/ie400688y  doi: 10.1021/ie400688y

    31. [31]

      Pan, Y. X.; Liu, C. J.; Shi, P. J. Power Sources 2008, 176 (1), 46. doi: 10.1016/j.jpowsour.2007.10.039  doi: 10.1016/j.jpowsour.2007.10.039

    32. [32]

      Chen, J. G.; Weisel, M. D.; Hall, R. B. Surf. Sci. 1991, 250 (1–3), 159. doi:10.1016/0039-6028(91)90718-8  doi: 10.1016/0039-6028(91)90718-8

    33. [33]

      Tyuliev, G. T.; Kostov, K. L. Phys. Rev. B 1999, 60 (4), 2900. doi: 10.1103/PhysRevB.60.2900  doi: 10.1103/PhysRevB.60.2900

    34. [34]

      Langell, M. A.; Nassir, M. H. J. Phys. Chem. 1995, 99 (12), 4162. doi: 10.1021/j100012a042  doi: 10.1021/j100012a042

    35. [35]

      Lambers, E. S.; Dykstal, C. N.; Seo, J. M.; Rowe, J. E.; Holloway, P. H. Oxid. Met. 1996, 45 (3/4), 301. doi: 10.1007/BF01046987  doi: 10.1007/BF01046987

    36. [36]

      Kitakatsu, N.; Maurice, V.; Marcus, P. Surf. Sci. 1998, 411 (1/2), 215. doi: 10.1016/S0039-6028(98)00372-0  doi: 10.1016/S0039-6028(98)00372-0

    37. [37]

      Kitakatsu, N.; Maurice, V.; Hinnen, C.; Marcus, P. Surf. Sci. 1998, 407 (1–3), 36. doi: 10.1016/S0039-6028(98)00089-2  doi: 10.1016/S0039-6028(98)00089-2

    38. [38]

      Rohr, F.; Wirth, K.; Libuda, J.; Cappus, D.; Baeumer, M.; Freund, H. J. Surf. Sci. 1994, 315 (1–2), L977. doi: 10.1016/0039-6028(94)90529-0  doi: 10.1016/0039-6028(94)90529-0

    39. [39]

      Erley, W.; Ibach, H.; Lehwald, S.; Wagner, H. Surf. Sci. 1979, 83 (2), 585. doi: 10.1016/0039-6028(79)90065-7  doi: 10.1016/0039-6028(79)90065-7

    40. [40]

      Chen, M. S.; Zheng, Y. P.; Wan, H. L. Top. Catal. 2013, 56 (15–17), 1299. doi: 10.1007/s11244-013-0140-0  doi: 10.1007/s11244-013-0140-0

    41. [41]

      Ertl, G. J. Mol. Catal. A-Chem. 2002, 182 (1), 10. doi: 10.1016/S1381-1169(01)00460-5  doi: 10.1016/S1381-1169(01)00460-5

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    7. [7]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    11. [11]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    17. [17]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(6)
  • Abstract views(551)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return