Citation: LIU Zhiming, LIU Guoliang, HONG Xinlin. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 215-222. doi: 10.3866/PKU.WHXB201803061 shu

Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production

  • Corresponding author: LIU Guoliang, liugl@whu.edu.cn HONG Xinlin, hongxl@whu.edu.cn
  • Received Date: 24 January 2018
    Revised Date: 2 March 2018
    Accepted Date: 2 March 2018
    Available Online: 6 February 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21373153)the National Natural Science Foundation of China 21373153

  • The development of the photocatalytic production of hydrogen from water splitting has attracted immense attention in recent years. CdS is a potential photocatalyst with a visible light response, though it still suffers from a limited activity for hydrogen production due to the fast recombination of photo-induced electron/hole pairs and the low reaction rate of hydrogen evolution on the surface. Studies on the effect of CdS surface structure and properties on hydrogen production are still very limited. In this work, we prepared three CdS nanocrystals with different morphologies: long rod, short rod, and triangular plate. The prepared samples were well characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). From the results of TEM, XRD and XPS, we find that the three CdS nanocrystals with different morphologies were successfully synthesized. From the PL spectra, we conclude that the area of exposed nonpolar surface and degree of surface defects increase with an increase in aspect ratio. We also performed the photocatalytic hydrogen production reaction using the three CdS crystals. Long rod-like CdS (lr-CdS) exhibits the highest photocatalytic activity, with a hydrogen production rate of 482 μmol·h-1·g-1, which is 2.6 times that of short rod-like CdS (sr-CdS) (183 μmol·h-1·g-1) and 8.8 times that of triangular plate-like CdS (tp-CdS, 55 μmol h-1·g-1). It is found that lr-CdS shows a higher hydrogen production rate than sr-CdS and tp-CdS. We find that the hydrogen production rate is related to the degree of surface defects. Surface defects can trap the photo-induced electrons/holes, thus decreasing their probability of recombination. In addition, these defects can be used to anchor Pd particles to form a heterojunction structure that facilitates the separation of photo-induced charges. Therefore, we also compared three CdS/Pd nanocrystals synthesized with the three abovementioned morphologies with respect to hydrogen production. With 1% (w, mass fraction) Pd, the hydrogen production rate was greatly enhanced compared to all the CdS catalysts. Compared to the unpromoted CdS, the reaction rate is enhanced 43.1, 10.7 and 6.0 times over those of sr-CdS, lr-CdS and tp-CdS, respectively. Notably, the hydrogen production rate with short rod-like CdS/Pd reaches 7884 μmol·h-1·g-1, which can be favorably compared with the ever-increasing values reported in the literature. Hopefully, this work provides knowledge on the effect of crystal surface structure and properties on photocatalysis.
  • 加载中
    1. [1]

      Chen, J.; Shen, S. H.; Guo, P. H.; Wang, M.; Wu, P.; Wang, X. X.; Guo, L. J. Appl. Catal. B-Environ. 2014, 152–153, 335. doi: 10.1016/j.apcatb.2014.01.047  doi: 10.1016/j.apcatb.2014.01.047

    2. [2]

      Acar, C.; Dincer, L.; Naterer, G. F. Int. J. Energy Res. 2016, 40, 1449. doi: 10.1002/er.3549  doi: 10.1002/er.3549

    3. [3]

      Xu, Y.; Xu, R. Appl. Surf. Sci. 2015, 351, 779. doi: 10.1016/j.apsusc.2015.05.171  doi: 10.1016/j.apsusc.2015.05.171

    4. [4]

      Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Huang, Y.; Liu, K. L.; Cheng, Z. Z.; Jiang, C.; He, J. Nanoscale 2015, 7, 19764. doi: 10.1039/c5nr06718a  doi: 10.1039/c5nr06718a

    5. [5]

      Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294. doi: 10.1039/c2cs35266d  doi: 10.1039/c2cs35266d

    6. [6]

      Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009  doi: 10.1016/j.rser.2005.01.009

    7. [7]

      Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d  doi: 10.1039/c3cs60378d

    8. [8]

      Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645  doi: 10.1021/cr1001645

    9. [9]

      Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Adv. Mater. 2012, 24, 229. doi: 10.1002/adma.201102752  doi: 10.1002/adma.201102752

    10. [10]

      Liao, C. H.; Huang, C. W.; Wu, J. C. S. Catalysts 2012, 2, 490. doi: 10.3390/catal2040490  doi: 10.3390/catal2040490

    11. [11]

      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g  doi: 10.1039/b800489g

    12. [12]

      Banerjee, S.; Pillai, S. C.; Falaras, P.; O'Shea, K. E.; Byrne, J. A.; Dionysiou, D. D. J. Phys. Chem. Lett. 2014, 5, 2543. doi: 10.1021/jz501030x  doi: 10.1021/jz501030x

    13. [13]

      Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Chem. Rev. 2014, 114, 9824. doi: 10.1021/cr5000738  doi: 10.1021/cr5000738

    14. [14]

      Irie, H.; Miura, S.; Kamiya, K.; Hashimoto, K. Chem. Phys. Lett. 2008, 457, 202. doi: 10.1016/j.cplett.2008.04.006  doi: 10.1016/j.cplett.2008.04.006

    15. [15]

      Ouyang, S. X.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 7757. doi: 10.1021/ja110691t  doi: 10.1021/ja110691t

    16. [16]

      Shenawi-Khalil, S.; Uvarov, V.; Kritsman, Y.; Menes, E.; Popov, I.; Sasson, Y. Catal. Commun. 2011, 12, 1136. doi: 10.1016/j.catcom.2011.03.014  doi: 10.1016/j.catcom.2011.03.014

    17. [17]

      Hu, C. C.; Lee, Y. L.; Teng, H. J. Phys. Chem. C 2011, 115, 2805. doi: 10.1021/jp1105983  doi: 10.1021/jp1105983

    18. [18]

      Yun, H. J.; Lee, H.; Kim, N. D.; Lee, D. M.; Yu, S.; Yi, J. ACS Nano 2011, 5, 4084. doi: 10.1021/nn2006738  doi: 10.1021/nn2006738

    19. [19]

      Li, C. X.; Han, L. J.; Liu, R. J.; Li, H. H.; Zhang, S. J.; Zhang, G. J. J. Mater. Chem. 2012, 22, 23815. doi: 10.1039/c2jm35415b  doi: 10.1039/c2jm35415b

    20. [20]

      Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Chem. Mater. 2008, 20, 110. doi: 10.1021/cm7029344  doi: 10.1021/cm7029344

    21. [21]

      Silva, L. A.; Ryu, S. Y.; Choi, J.; Choi, Y.; Hoffmann, M. R. J. Phys. Chem. C 2008, 112, 12069. doi: 10.1021/jp8037279  doi: 10.1021/jp8037279

    22. [22]

      Yu, J. G.; Yu, Y. F.; Cheng, B. RSC Adv. 2012, 2, 11829. doi: 10.1039/c2ra22019a  doi: 10.1039/c2ra22019a

    23. [23]

      Jin, J.; Yu, J. G.; Liu, G.; Wong, P. K. J. Mater. Chem. A 2013, 1, 10927. doi: 10.1039/c3ta12301d  doi: 10.1039/c3ta12301d

    24. [24]

      Zhang, K.; Guo, L. J. Catal. Sci. Technol. 2013, 3, 1672. doi: 10.1039/c3cy00018d  doi: 10.1039/c3cy00018d

    25. [25]

      Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e  doi: 10.1021/ar300227e

    26. [26]

      Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. ACS Nano 2013, 7, 1072. doi: 10.1021/nn303973r  doi: 10.1021/nn303973r

    27. [27]

      Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce1, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; et al. Sci. Rep. 2013, 3, 2657. doi: 10.1038/srep02657  doi: 10.1038/srep02657

    28. [28]

      Chen, W.; Chen, K. B.; Peng, Q.; Li, Y. D. Small 2009, 5, 681. doi: 10.1002/smll.200801359  doi: 10.1002/smll.200801359

    29. [29]

      Wang, X. L.; Feng, Z. C.; Fan, D. Y.; Fan, F. T.; Li, C. Cryst. Growth Des. 2010, 10, 5312. doi: 10.1021/cg101166t  doi: 10.1021/cg101166t

    30. [30]

      Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024  doi: 10.1016/j.jcat.2009.06.024

    31. [31]

      Yang, J. H.; Yan, H. J.; Wang, X. L.; Wen, F. Y.; Wang, Z. J.; Fan, D. Y.; Shi, J. Y.; Li, C. J. Catal. 2012, 290, 151. doi: 10.1016/j.jcat.2012.03.008  doi: 10.1016/j.jcat.2012.03.008

    32. [32]

      Tauc, J.; Grigorovici, R.; Vancu, A. Phys. Stat. Sol. 1966, 15, 627. doi: 10.1016/0160-9327(66)90041-X  doi: 10.1016/0160-9327(66)90041-X

    33. [33]

      Zhang, H.; Cai, J. M.; Wang, Y. T.; Wu, M. Q.; Meng, M.; Tian, Y.; Li, X. G.; Zhang, J.; Zheng, L. R.; Jiang, Z.; et al. Appl. Catal. B- Environ. 2018, 220, 126. doi: 10.1016/j.apcatb.2017.08.046  doi: 10.1016/j.apcatb.2017.08.046

    34. [34]

      Cai, J. M.; Wu, M. Q.; Wang, Y. T.; Zhang, H.; Meng, M.; Tian, Y.; Li, X. G.; Zhang, J.; Zheng, L. R.; Gong, J. L. Chem 2017, 2, 877. doi: 10.1016/j.chempr.2017.05.006  doi: 10.1016/j.chempr.2017.05.006

    35. [35]

      Wang, Y. T.; Cai, J. M.; Wu, M. Q.; Zhang, H.; Meng, M.; Tian, Y.; Ding, T.; Gong, J. L.; Jiang, Z.; Li, X. G. ACS Appl. Mater. Interfaces 2016, 8, 23006. doi: 10.1021/acsami.6b05777  doi: 10.1021/acsami.6b05777

    36. [36]

      Cai, J. M.; Wang, Y. T.; Zhu, Y. M.; Wu, M. Q.; Zhang, H.; Li, X. G.; Jiang, Z.; Meng, M. ACS Appl. Mater. Interfaces 2015, 7, 24987. doi: 10.1021/acsami.5b07318  doi: 10.1021/acsami.5b07318

    37. [37]

      Peng, T. Y.; Li, K.; Zeng, P.; Zhang, Q. G.; Zhang, X. G. J. Phys. Chem. C 2012, 116, 22720. doi:10.1021/jp306947d  doi: 10.1021/jp306947d

    38. [38]

      Cheng, F. Y.; Yin, H.; Xiang, Q. J. Appl. Surf. Sci. 2017, 391, 432. doi: 10.1016/j.apsusc.2016.06.169  doi: 10.1016/j.apsusc.2016.06.169

    39. [39]

      Jia, T. T.; Kolpin, A.; Ma, C. S.; Chan, R. C. T.; Kwok, W. M.; Tsang, S. C. E. Chem. Commun. 2014, 50, 1185. doi: 10.1039/c3cc47301e  doi: 10.1039/c3cc47301e

    40. [40]

      Xiang, Q. J.; Cheng, F. Y.; Lang, D. ChemSusChem 2016, 9, 996. doi: 10.1002/cssc.201501702  doi: 10.1002/cssc.201501702

    41. [41]

      Zeng, P.; Zhang, Q. G.; Peng, T. Y.; Zhang, X. H. Phys. Chem. Chem. Phys. 2011, 13, 21496. doi: 10.1039/c1cp22059d  doi: 10.1039/c1cp22059d

    42. [42]

      Du, X. H.; Li, Y.; Yin, H.; Xiang, Q. J. Acta Phys. -Chim. Sin. 2018, 34, 414.  doi: 10.3866/PKU.WHXB201708283

    43. [43]

      Zhang, C.; Wu, Z. J.; Liu, J. J.; Piao, L. Y. Acta Phys. -Chim. Sin. 2017, 33, 1492.  doi: 10.3866/PKU.WHXB201704141

  • 加载中
    1. [1]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    2. [2]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    3. [3]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    4. [4]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    5. [5]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    6. [6]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    7. [7]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    8. [8]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    9. [9]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    10. [10]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    11. [11]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    12. [12]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    16. [16]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    17. [17]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    18. [18]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    19. [19]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    20. [20]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

Metrics
  • PDF Downloads(18)
  • Abstract views(609)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return