Citation: LIU Pingying, LIU Chunyan, LIU Qian, MA Jing. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1171-1178. doi: 10.3866/PKU.WHXB201803024 shu

Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex

  • Corresponding author: MA Jing, majing@nju.edu.cn
  • Received Date: 25 December 2017
    Revised Date: 28 February 2018
    Accepted Date: 28 February 2018
    Available Online: 2 October 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21673111, 21661017) and Natural Science Foundation of Jiangxi Province, China (20161BAB203081)the National Natural Science Foundation of China 21673111the National Natural Science Foundation of China 21661017Natural Science Foundation of Jiangxi Province, China 20161BAB203081

  • The construction of a photo-controllable artificial molecular machine capable of realizing the light-driven motion on a molecular scale and of performing a specific function is a fascinating topic in supramolecular chemistry. The bistable switchable molecule, azobenzene (AZO), has been introduced into the supramolecular architecture as a key building block, owing to its efficient and reversible trans (E)-cis (Z) photoisomerization. The binding strength of the dibenzo[24]crown-8 (DB24C8) host and dialkylammonium-based rod-like guest consisting of an AZO moiety and the Z\begin{document}$\to $\end{document}E photoisomerization process in an interlocked host-guest complex have been investigated by the density functional theory (DFT) calculations and the reactive molecular dynamics (RMD) simulations by considering both torsion and inversion paths. The strong host-guest binding strength provides a necessary premise to stabilize the complex during the E-Z photoisomerization of the AZO unit, which is a terminal stopper to control the directional motion of the guest. A stronger binding strength for the Z isomer can be induced by the stronger hydrogen-bonding interaction. The steric effect is introduced into the Z isomer to force the ring slipping exclusively over the cyclopentyl terminal (pseudostopper). The host-guest complexation has a slight effect on the conformation of the AZO functional subunit for the two isomers. The faster Z\begin{document}$\to $\end{document}E photoisomerization process within the picosecond timescale is kinetically more favored than the dethreading of the ring through the pseudostopper subunit of the rod. After isomerization, a structure relaxation is observed for the crown ether ring within 500 ps. The flexible backbone of the crown ether ring is helpful in realizing steady and stable host-guest recognition during photoisomerization. Moreover, the orthogonality of the site-specific binding interaction is revealed by the similar binding energies obtained at similar hydrogen bonding recognition sites for various interlocked host-guest supramolecular systems although the constituents of the guests are different from each other. The introduction of two stereoisomers of the AZO subunit has little influence on the other conformations of guest subunits. These results are useful for the rational design of more sophisticated stimuli-controlled artificial molecular machines.
  • 加载中
    1. [1]

      Ma, X.; Zhao, Y. Chem. Rev. 2015, 115, 7794. doi: 10.1021/cr500392w  doi: 10.1021/cr500392w

    2. [2]

      Szymański, W.; Beierle, J.; Kistemaker, H.; Velema, W.; Feringa, B. Chem. Rev. 2013, 113, 6114. doi: 10.1021/cr300179f  doi: 10.1021/cr300179f

    3. [3]

      Balzani, V.; Credi, A.; Silvi, S.; Venturi, M. Chem. Soc. Rev. 2006, 35, 1135. doi: 10.1039/b517102b  doi: 10.1039/b517102b

    4. [4]

      Balzani, V.; Credi, A.; Venturi, M. Chem. Soc. Rev. 2009, 38, 1542. doi: 10.1039/b806328c  doi: 10.1039/b806328c

    5. [5]

      Crowley, J.; Goldup, S.; Lee, A.; Leigh, D.; McBurney, R. Chem. Soc. Rev. 2009, 38, 1530. doi: 10.1039/b804243h  doi: 10.1039/b804243h

    6. [6]

      Erbas-Cakmak, S.; Leigh, D.; McTernan, C.; Nussbaumer, A. Chem. Rev. 2015, 115, 10081. doi: 10.1021/acs.chemrev.5b00146  doi: 10.1021/acs.chemrev.5b00146

    7. [7]

      Klajn, R.; Stoddart, J.; Grzybowski, B. Chem. Soc. Rev. 2010, 39, 2203. doi: 10.1039/b920377j  doi: 10.1039/b920377j

    8. [8]

      Saha, S.; Stoddart, J. Chem. Soc. Rev. 2007, 36, 77. doi: 10.1039/b607187b  doi: 10.1039/b607187b

    9. [9]

      Tian, H.; Wang, Q. Chem. Soc. Rev. 2006, 35, 361. doi: 10.1039/b512178g  doi: 10.1039/b512178g

    10. [10]

      van Dongen, S.; Cantekin, S.; Elemans, J.; Rowan, A.; Nolte, R. Chem. Soc. Rev. 2014, 43, 99. doi: 10.1039/c3cs60178a  doi: 10.1039/c3cs60178a

    11. [11]

      Zhang, T.; Mu, L.; She, G.; Shi, W. Chem. Commun. 2012, 48, 452. doi: 10.1039/c1cc16339f  doi: 10.1039/c1cc16339f

    12. [12]

      Burkhart, C.; Haberhauer, G. Eur. J. Org. Chem. 2017, 2017, 1308. doi: 10.1002/ejoc.201601371  doi: 10.1002/ejoc.201601371

    13. [13]

      Dey, K.; Sen, A. J. Am. Chem. Soc. 2017, 139, 7666. doi: 10.1021/jacs.7b02347  doi: 10.1021/jacs.7b02347

    14. [14]

      Kathan, M.; Hecht, S. Chem. Soc. Rev. 2017, 46, 5536. doi: 10.1039/c7cs00112f  doi: 10.1039/c7cs00112f

    15. [15]

      Oruganti, B.; Wang, J.; Durbeej, B. Int. J. Quantum Chem. 2017, e25405. doi: 10.1002/qua.25405  doi: 10.1002/qua.25405

    16. [16]

      Qu, D.; Wang, Q.; Zhang, Q.; Ma, X.; Tian, H. Chem. Rev. 2015, 115, 7543. doi: 10.1021/cr5006342  doi: 10.1021/cr5006342

    17. [17]

      Baroncini, M.; Bergamini, G. Chem. Rec. 2017, 17, 700. doi: 10.1002/tcr.201600112  doi: 10.1002/tcr.201600112

    18. [18]

      Ueno, A.; Yoshimura, H.; Saka, R.; Osa, T. J. Am. Chem. Soc. 1979, 101, 2779. doi: 10.1002/adom.201600281  doi: 10.1002/adom.201600281

    19. [19]

      Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Adv. Opt. Mater. 2016, 4, 1322. doi: 10.1002/adom.201600281  doi: 10.1002/adom.201600281

    20. [20]

      Baroncini, M.; Silvi, S.; Venturi, M.; Credi, A. Angew. Chem. Int. Ed. 2012, 51, 4223. doi: 10.1002/anie.201200555  doi: 10.1002/anie.201200555

    21. [21]

      Ragazzon, G.; Baroncini, M.; Silvi, S.; Venturi, M.; Credi, A. Nat. Nanotechnol. 2015, 10, 70. doi: 10.1038/nnano.2014.260  doi: 10.1038/nnano.2014.260

    22. [22]

      Liu, Z.; Ma, J. J. Phys. Chem. A 2011, 115, 10136. doi: 10.1021/jp203570m  doi: 10.1021/jp203570m

    23. [23]

      Tian, Z.; Wen, J.; Ma, J. J. Chem. Phys. 2013, 139, 014706. doi: 10.1063/1.4812379  doi: 10.1063/1.4812379

    24. [24]

      Wen, J.; Tian, Z.; Ma, J. J. Phys. Chem. C 2013, 117, 19934. doi: 10.1021/jp404434r  doi: 10.1021/jp404434r

    25. [25]

      Tian, Z.; Wen, J.; Ma, J. Mol. Simul. 2014, 41, 28. doi: 10.1080/08927022.2014.918974  doi: 10.1080/08927022.2014.918974

    26. [26]

      Liu, C.; Zheng, D.; Hu, W.; Tian, Z.; Zhao, J.; Zhu, Y.; Ma, J. Nanoscale 2017, 9, 16700. doi: 10.1039/C7NR03421K  doi: 10.1039/C7NR03421K

    27. [27]

      Zhao, J.; Liu, C.; Ma, J. Nanoscale 2017, 9, 19017. doi: 10.1039/c7nr07382h  doi: 10.1039/c7nr07382h

    28. [28]

      Pang, J.; Tian, Z.; Ma, J. Sci. Sin. Chim. 2015, 45, 412. doi: 10.1360/n032014-00250  doi: 10.1360/n032014-00250

    29. [29]

      Zheng, D.; Yuan, X.; Ma, J. Acta Phys. -Chim. Sin. 2016, 32, 290.  doi: 10.3866/PKU.WHXB201512072

    30. [30]

      Tabacchi, G.; Silvi, S.; Venturi, M.; Credi, A.; Fois, E. ChemPhysChem 2016, 17, 1913. doi: 10.1002/cphc.201501160  doi: 10.1002/cphc.201501160

    31. [31]

      Bandara, H.; Burdette, S. Chem. Soc. Rev. 2012, 41, 1809. doi: 10.1039/c1cs15179g  doi: 10.1039/c1cs15179g

    32. [32]

      Ciminelli, C.; Granucci, G.; Persico, M. Chemistry 2004, 10, 2327. doi: 10.1002/chem.200305415  doi: 10.1002/chem.200305415

    33. [33]

      Floss, G.; Saalfrank, P. J. Phys. Chem. A 2015, 119, 5026. doi: 10.1021/acs.jpca.5b02933  doi: 10.1021/acs.jpca.5b02933

    34. [34]

      Gao, A.; Li, B.; Zhang, P.; Han, K. J. Chem. Phys. 2012, 137, 204305. doi:10.1063/1.4767459  doi: 10.1063/1.4767459

    35. [35]

      Ishikawa, T.; Noro, T.; Shoda, T. J. Chem. Phys. 2001, 115, 7503. doi: 10.1063/1.1406975  doi: 10.1063/1.1406975

    36. [36]

      Li, Y.; Hartke, B. J. Chem. Phys. 2013, 139, 224303. doi: 10.1063/1.4837237  doi: 10.1063/1.4837237

    37. [37]

      Pederzoli, M.; Pittner, J.; Barbatti, M.; Lischka, H. J. Phys. Chem. A 2011, 115, 11136. doi:10.1021/jp2013094  doi: 10.1021/jp2013094

    38. [38]

      Tiberio, G.; Muccioli, L.; Berardi, R.; Zannoni, C. ChemPhysChem 2010, 11, 1018. doi: 10.1002/cphc.200900652  doi: 10.1002/cphc.200900652

    39. [39]

      Yin, T.; Zhao, Z.; Zhang, H. RSC Adv. 2016, 6, 79879. doi: 10.1039/c6ra10880f  doi: 10.1039/c6ra10880f

    40. [40]

      Bockmann, M.; Braun, S.; Doltsinis, N.; Marx, D. J. Chem. Phys. 2013, 139, 084108. doi: 10.1063/1.4818489  doi: 10.1063/1.4818489

    41. [41]

      Liu, P.; Chen, Q.; Ma, J. J. Comput. Chem. 2016, 37, 2228. doi: 10.1002/jcc.24452  doi: 10.1002/jcc.24452

    42. [42]

      Liu, P.; Chen, Q.; Ma, J. Sci. Sin. Chim. 2016, 46, 69. doi: 10.1360/N032015-00152  doi: 10.1360/N032015-00152

    43. [43]

      Liu, P.; Li, W.; Liu, L.; Wang, L.; Ma, J. J. Phys. Chem. A 2014, 118, 9032. doi: 10.1021/jp5020516  doi: 10.1021/jp5020516

    44. [44]

      Ashton, P.; Ballardini, R.; Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M.; Gandolfi, M.; Gomez-Lopez, M.; Martinez-Diaz, M.; Piersanti, A.; et al. J. Am. Chem. Soc. 1998, 120, 11932. doi:10.1021/ja982167m  doi: 10.1021/ja982167m

    45. [45]

      Frisch, M. ; Trucks, G. ; Schlegel, H. ; Scuseria, G. ; Robb, M. ; Cheeseman, J. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. et al. Gaussian 09, Revision B. 01; Gaussian Inc. : Wallingford, CT, USA, 2010.

    46. [46]

      Li, S.; Li, W.; Fang, T. J. Am. Chem. Soc. 2005, 127, 7215. doi: 10.1021/ja0427247  doi: 10.1021/ja0427247

    47. [47]

      Li, W.; Li, S.; Jiang, Y. J. Phys. Chem. A 2007, 111, 2193. doi: 10.1021/jp067721q  doi: 10.1021/jp067721q

    48. [48]

      Li, S.; Li, W.; Ma, J. Acc. Chem. Res. 2014, 47, 2712. doi: 10.1021/ar500038z  doi: 10.1021/ar500038z

    49. [49]

      Boys, S.; Bernardi, F. Mol. Phys. 1970, 19, 553. doi: 10.1080/00268977000101561  doi: 10.1080/00268977000101561

    50. [50]

      Simon, S.; Duran, M.; Dannenberg, J. J. Chem. Phys. 1996, 105, 11024. doi: 10.1063/1.472902  doi: 10.1063/1.472902

    51. [51]

      van Duin, A.; Dasgupta, S.; Lorant, F.; Goddard, W. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u  doi: 10.1021/jp004368u

    52. [52]

      Mueller, J.; van Duin, A.; Goddard, W. J. Phys. Chem. C 2010, 114, 4939. doi: 10.1021/jp9035056  doi: 10.1021/jp9035056

    53. [53]

      Brenner, D.; Shenderova, O.; Harrison, J.; Stuart, S.; Ni, B.; Sinnott, S. J. Phys.: Condens. Matter 2002, 14, 783. doi: 10.1088/0953-8984/14/4/312  doi: 10.1088/0953-8984/14/4/312

    54. [54]

      Yu, J.; Sinnott, S.; Phillpot, S. Phys. Rev. B 2007, 75, 085311. doi: 10.1103/PhysRevB.75.085311  doi: 10.1103/PhysRevB.75.085311

    55. [55]

      Shan, T.; Devine, B.; Hawkins, J.; Asthagiri, A.; Phillpot, S.; Sinnott, S. Phys. Rev. B 2010, 82, 235302. doi: 10.1103/PhysRevB.82.235302  doi: 10.1103/PhysRevB.82.235302

    56. [56]

      Materials Studio, Version 4. 0; Accelrys, Inc. : San Diego, CA, USA, 2006.

    57. [57]

      Liu, P.; Li, W.; Kan, Z.; Sun, H.; Ma, J. J. Phys. Chem. A 2016, 120, 490. doi: 10.1021/acs.jpca.5b10085  doi: 10.1021/acs.jpca.5b10085

  • 加载中
    1. [1]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    2. [2]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    3. [3]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    4. [4]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    7. [7]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    8. [8]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    9. [9]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    10. [10]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    11. [11]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    12. [12]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    13. [13]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    14. [14]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    15. [15]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    16. [16]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    17. [17]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    18. [18]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

Metrics
  • PDF Downloads(8)
  • Abstract views(400)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return