Citation: Zhang Ruolan, Wang Chao, Chen Hao, Zhao Heng, Liu Jing, Li Yu, Su Baolian. Cadmium Sulfide Inverse Opal for Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 180301. doi: 10.3866/PKU.WHXB201803014 shu

Cadmium Sulfide Inverse Opal for Photocatalytic Hydrogen Production

  • Corresponding author: Li Yu, yu.li@whut.edu.cn
  • Received Date: 5 March 2019
    Revised Date: 26 March 2019
    Accepted Date: 9 April 2019
    Available Online: 12 March 2019

    Fund Project: Natural Science Foundation of Hubei Province, China 2018CFB242Program for Changjiang Scholars Innovative Research Team in University, China IRT_15R52National Key R & D Program of China (2016YFA0202602), National Natural Science Foundation of China (U1663225, 21671155, 21805220), Natural Science Foundation of Hubei Province, China (2018CFB242, 2018CFA054), Major Programs of Technical Innovation in Hubei, China (2018AAA012), Program for Changjiang Scholars Innovative Research Team in University, China (IRT_15R52)National Natural Science Foundation of China 21805220Major Programs of Technical Innovation in Hubei, China 2018AAA012Natural Science Foundation of Hubei Province, China 2018CFA054National Natural Science Foundation of China 21671155National Natural Science Foundation of China U1663225National Key R & D Program of China 2016YFA0202602

  • Photocatalysis based on visible light is an efficient and promising strategy to convert solar energy into chemical energy and solve the global issues of environmental pollution and energy shortages. CdS, as a visible light responsive semiconductor material, is widely used in photocatalysis and photoluminescence because of its simple synthesis, abundant raw materials, and appropriate bandgap structure. The inverse opal (IO) structure belonging to photonic crystal structure with unique three-dimensionally ordered macro-mesopore, which can tune the propagation direction of incident light and improve photocatalytic performance. Therefore, IO has attracted extensive attention for photocatalysis applications. Herein, CdS IO photonic crystal films were prepared by co-assembly using CdS nanocrystals and poly(styrene-methyl methacrylate-3-sulfopropyl methacrylate, potassium salt) (P(St-MMA-SPMAP)) emulsion. This method is widely used because it is simple and can rapidly prepare large photonic crystal films. The pore size of the IO structure was regulated by changing the diameter of the polymer. The IO structure was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), and reflectance spectroscopy. The photocatalysis performance of three samples was evaluated via photocatalytic water splitting under visible light irradiation (λ ≥ 420 nm). The photocatalytic hydrogen production rate of the CdS IO film fabricated using a 310 nm P(St-MMA-SPMAP) template (CdS-310) was twice that of CdS nanoparticles (CdS-NPs) under visible light irradiation. This photocatalytic performance enhancement was ascribed to the hierarchically porous structure of the IO photonic crystal. On the one hand, the IO structure increased the propagation of photons in the photocatalytic material and improved sunlight utilization. On the other hand, the structure is conductive to transport and adsorption of molecules. In addition, the IO structure was composed of nanoparticles, providing more active sites for the photocatalytic reaction.
  • 加载中
    1. [1]

      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g  doi: 10.1039/b800489g

    2. [2]

      Cui, H. Q.; Jing, L. Q.; Xie, M. Z.; Li, Z. J. Acta Phys.-Chim. Sin. 2014, 30, 1903.  doi: 10.3866/PKU.WHXB201407173

    3. [3]

      Bahnemann, D.; Henglein, A.; Lilie, J.; Spanhel, L. J. J. Phys. Chem. 1984, 88, 709. doi: 10.1021/j150648a018  doi: 10.1021/j150648a018

    4. [4]

      Tong, H.; Ouyang, S. X.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Adv. Mater. 2012, 43, 229. doi: 10.1002/adma.201102752  doi: 10.1002/adma.201102752

    5. [5]

      Chen, X. B.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535  doi: 10.1021/cr0500535

    6. [6]

      Yang, Y. X.; Guo, Y. N.; Liu, F. Y.; Yuan, X.; Guo, Y. H.; Zhang, S. Q.; Guo, W.; Huo, M. X. Appl. Catal. B-Environ. 2013, 142, 828. doi: 10.1016/j.apcatb.2013.06.026  doi: 10.1016/j.apcatb.2013.06.026

    7. [7]

      Du, X. H.; Li, Y.; Yin, H.; Xiang, Q. J. Acta Phys. -Chim. Sin.2018, 34, 414.  doi: 10.3866/PKU.WHXB201708283

    8. [8]

      Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024  doi: 10.1016/j.jcat.2009.06.024

    9. [9]

      Liu, Z. M.; Liu, G. L.; Hong, X. L. Acta Phys. -Chim. Sin. 2018, 35, 215.  doi: 10.3866/PKU.WHXB201803061

    10. [10]

      Tongying, P.; Plashnitsa, V. V.; Petchsang, N.; Vietmeyer, F.; Ferraudi, G. J.; Kryloya, G.; Kuno, M. J. Phys. Chem. Lett. 2012, 3, 3234. doi: 10.1021/jz301628b  doi: 10.1021/jz301628b

    11. [11]

      Acharya, K. P.; Khnayzer, R. S.; O'Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov, M. Nano Lett. 2011, 11, 2919. doi: 10.1021/nl201388c  doi: 10.1021/nl201388c

    12. [12]

      Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897. doi: 10.1126/science.282.5390.897  doi: 10.1126/science.282.5390.897

    13. [13]

      John, S. Phys. Rev. Lett. 1987, 58, 2486. doi: 10.1103/PhysRevLett.58.2486  doi: 10.1103/PhysRevLett.58.2486

    14. [14]

      Braun, P. V.; Wiltzius, P. Adv. Mater. 2001, 13, 482. doi: 10.1002/1521-4095(200104)13:7 < 482::Aid-Adma482 > 3.0.Co; 2-4  doi: 10.1002/1521-4095(200104)13:7<482::Aid-Adma482>3.0.Co;2-4

    15. [15]

      Raccis, R.; Nikoubashman, A.; Retsch, M.; Jonas, U.; Koynov, K.; Butt, H. -J.; Likos, C. N.; Fytas, G. ACS Nano 2011, 5, 4607. doi: 10.1021/nn200767x  doi: 10.1021/nn200767x

    16. [16]

      Meng, S.; Li, D.; Zheng, X.; Wang, J.; Chen, J.; Fang, J.; Shao, Y.; Fu, X. J. Mater. Chem. A 2013, 1, 2744. doi: 10.1039/c2ta01327d  doi: 10.1039/c2ta01327d

    17. [17]

      Zhao, H.; Wu, M.; Liu, J.; Deng, Z.; Li, Y.; Su, B. L. Appl. Catal. B-Environ. 2016, 184, 182. doi: 10.1016/j.apcatb.2015.11.018  doi: 10.1016/j.apcatb.2015.11.018

    18. [18]

      Chen, J. I. L.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. Adv. Mater. 2006, 18, 1915. doi: 10.1002/adma.200600588  doi: 10.1002/adma.200600588

    19. [19]

      Wang, J. S.; Wang, E. J.; Yu, Y. L.; Guo, L. M.; Cao, Y. A. Acta Phys. -Chim. Sin. 2014, 30, 513.  doi: 10.3866/PKU.WHXB201401073

    20. [20]

      Liu, J.; Jin, J.; Li, Y.; Huang, H. -W.; Wang, C.; Wu, M.; Chen, L. -H.; Su, B.-L. J. Mater. Chem. A 2014, 2, 5051. doi: 10.1039/c3ta15044e  doi: 10.1039/c3ta15044e

    21. [21]

      Özbay, E.; Tuttle, G.; Sigalas, M.; Soukoulis, C. M.; Ho, K. M. Phys. Rev. B 1995, 51, 13961. doi: 10.1103/PhysRevB.51.13961  doi: 10.1103/PhysRevB.51.13961

    22. [22]

      Xu, Y.; Sun, H. B.; Ye, J. Y.; Matsuo, S.; Misawa, H. J. Opt. Soc. Am. B 2001, 18, 1084. doi: 10.1364/JOSAB.18.001084  doi: 10.1364/JOSAB.18.001084

    23. [23]

      Baba, T.; Kamizawa, N.; Ikeda, M. Physica B 1996, 227, 415. doi: 10.1016/0921-4526(96)00457-7  doi: 10.1016/0921-4526(96)00457-7

    24. [24]

      Wang, M. Q.; Wang, X. G. Sol. Energ. Mat. Sol. C 2008, 92, 357. doi: 10.1016/j.solmat.2007.10.001  doi: 10.1016/j.solmat.2007.10.001

    25. [25]

      Yang, L. L.; Yang, Z. H.; Cao, W. X.; Chen, L.; Xu, J.; Zhang, H. Z. J. Phys. Chem. B 2005, 109, 11501.  doi: 10.1021/jp050242r

    26. [26]

      Yang, L. -L.; Cong, H. -L.; Cao, W. -X. Acta Polym. Sin. 2005, 1, 223. doi: 10.3321/j.issn:1000-3304.2005.02.013  doi: 10.3321/j.issn:1000-3304.2005.02.013

    27. [27]

      Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. Y. J. Phys. Chem. B 2003, 107, 8. doi: 10.1021/jp025910c  doi: 10.1021/jp025910c

    28. [28]

      Sadakane, M.; Sasaki, K.; Nakamura, H.; Yamamoto, T.; Ninomiya, W.; Ueda, W. Langmuir 2012, 28, 17766. doi: 10.1021/la303921u  doi: 10.1021/la303921u

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    14. [14]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(562)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return