Citation: ZHAO Yasong, ZHANG Lijuan, QI Jian, JIN Quan, LIN Kaifeng, WANG Dan. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 1048-1060. doi: 10.3866/PKU.WHXB201802281 shu

Graphdiyne with Enhanced Ability for Electron Transfer

  • Corresponding author: WANG Dan, danwang@ipe.ac.cn
  • Received Date: 1 February 2018
    Revised Date: 20 February 2018
    Accepted Date: 22 February 2018
    Available Online: 28 September 2018

    Fund Project: the National Natural Science Foundation of China 21590795the National Natural Science Foundation of China 51702321Youth Innovation Promotion Association of CAS 2017070the Scientific Instrument Developing Project of the Chinese Academy of Sciences YZ201623the National Natural Science Foundation of China 51672274The project was supported by the National Natural Science Foundation of China (21590795, 51772294, 51572261, 51672276, 51672274, 51702321, 51661165013, 51772296), Queensland-Chinese Academy of Sciences Collaborative Science Fund (122111KYSB20170001), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (YZ201623) and Youth Innovation Promotion Association of CAS (2017070)the National Natural Science Foundation of China 51572261the National Natural Science Foundation of China  51661165013the National Natural Science Foundation of China 51772294the National Natural Science Foundation of China 51772296Queensland-Chinese Academy of Sciences Collaborative Science Fund 122111KYSB20170001the National Natural Science Foundation of China 51672276

  • As a new member of the carbon allotrope family, graphdiynes (GDs)consist of both sp-and sp2-hybridized carbon atoms, possessing unique π-conjugated carbon skeletons and expanded 18C-hexagonalpores in two dimensions. In contrast with the zero band gap graphene (GR), GDis a semiconductor with a direct band gap of 1.22 eV calculated according tothe density functional theory (DFT) using the HSE06 method; this makes it apotential semiconductor material that can supplant silicon in the integratedcircuit industry. Moreover, owing to the presence of diacetylenic linkagesbetween its hexagonal carbon rings, GD shows electron-deficient properties, which lead to its electron-accepting tendency. Graphdiynes exhibit unusualsemiconducting properties with excellent charge mobilities and electrontransport properties that are associated with its distinct topological andelectronic structures. Graphdiynes play the role of not only electron-acceptorsthat efficiently collect the electrons from other materials but also electron-donorsthat inject electrons into other systems, thus exhibiting excellentelectron-transfer enhancement characteristics. The unique electron-transferenhancement property of GDs inspired us to summarize the interactions betweenGDs and other materials including metal oxides, metal nano-particles, andorganic molecules. In this review paper, we first introduce the TiO2/GDnanocomposite, because the linking of GDs and titania nanoparticles (P25) throughthe Ti—O—Cbond sets an important precedent for exploring the electron-transfer behaviors involvingGDs and the metal oxide. These results indicate that the GDs can act asacceptors of the photogenerated electrons in the TiO2/GD system, effectively suppressing charge recombination and resulting in excellent photocatalyticproperties. Nevertheless, the GDs in CdSe quantum dots (QDs)/GD composites areable to collect photogenerated holes from the QDs and perform as promising hole-transfermaterials in the photoelectrochemical cell for water splitting. As a result, the interactions between GDs and various metal compounds should be explored todeeply understand the electron-transfer properties of GDs. Furthermore, GDs canbe also used as electron donors to reduce PdCl42- toPd nanoparticles that can subsequently be used for the electroless depositionof highly dispersed Pd nanoparticles. Based on electrostatic potential surfaceanalysis over the Pt2/GD, GDs can attract the electron cloud fromthe Pt nanoparticles and produce a positive polarization of the metal atomsurface. However, due to its large π-conjugated system, GD can alsocollect and transfer electrons from the electrode under a bias voltage, making ita new type of electrocatalyst material, especially for single-atom catalysts.The interactions between GDs and metal particles/clusters/atoms have attracted thebroad attention of the rapidly developing field of single-atom catalysis.Finally, research on the interactions between GDs and organic molecules, especially biomolecules, is still in its infancy and requires development. In summary, we overview the recent research progress on GD and its enhanced ability forelectron transfer in this review paper, including metal oxides/GD, metalnano-particles/GD, polymers/GD, and organic molecules/GD, from bothexperimental and theoretical perspectives, and emphasize the interactions andelectron-transfer enhancement properties. It is expected that this review canpromote the development and applications of GD chemistry.
  • 加载中
    1. [1]

      Tang, H.; Hessel, C. M.; Wang, J.; Yang, N.; Yu, R.; Zhao, H.; Wang, D. Chem. Soc. Rev. 2014, 41, 4281. doi: 10.1039/c3cs60437c  doi: 10.1039/c3cs60437c

    2. [2]

      Savage, N. Nature 2012, 483, S30. doi: 10.1038/483S30a  doi: 10.1038/483S30a

    3. [3]

      Titirici, M. M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; Del, M. F.; Clark, J. H.; MacLachlan, M. J. Chem. Soc. Rev. 2015, 44, 250. doi: 10.1039/c4cs00232f  doi: 10.1039/c4cs00232f

    4. [4]

      Su, D. S.; Perathoner, S.; Genti, G. Chem. Rev. 2013, 113, 5782. doi: 10.1021/cr300367d  doi: 10.1021/cr300367d

    5. [5]

      Hirsch, A. Nat. Mater. 2010, 9, 868. doi: 10.1038/nmat2885  doi: 10.1038/nmat2885

    6. [6]

      Kr tschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354. doi: 10.1038302/347354a0  doi: 10.1038302/347354a0

    7. [7]

      Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0  doi: 10.1038/354056a0

    8. [8]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    9. [9]

      Novoselov, K. S.; Fal, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192. doi: 10.1038/nature11458  doi: 10.1038/nature11458

    10. [10]

      Baughman, R. H.; Eckhardt, H. J. Chem. Phys. 1987, 87, 6687. doi: 10.1063/1.453405  doi: 10.1063/1.453405

    11. [11]

      Haley, M. M.; Bell, M. L.; English, J. J.; Johnson, C. A.; Weakley, T. J. J. Am. Chem. Soc. 1997, 119, 2956. doi: 10.1021/ja964048h  doi: 10.1021/ja964048h

    12. [12]

      Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem. Int. Ed. 1997, 36, 836. doi: 10.1002/anie.199708361  doi: 10.1002/anie.199708361

    13. [13]

      Haley, M. M. Pure Appl. Chem. 2008, 80, 519. doi: 10.1351/pac200880030519  doi: 10.1351/pac200880030519

    14. [14]

      Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 46, 3256. doi: 10.1039/b922733d  doi: 10.1039/b922733d

    15. [15]

      Chen, Y.; Liu, H.; Li, Y. Chin. Sci. Bull. 2016, 61, 2901. doi: 10.1360/N972016-00483  doi: 10.1360/N972016-00483

    16. [16]

      Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572. doi: 39/c3cs60388a  doi: 10.1039/c3cs60388a

    17. [17]

      Baughman, R. H.; Galv o, D. S.; Cui, C.; Wang, Y.; Tománek, D. Chem. Phys. Lett. 1993, 204, 8. doi: 10.1016/0009-2614[93]85598-I  doi: 10.1016/0009-2614[93]85598-I

    18. [18]

      Zhang, S.; Zhang, Y.; Huang, S.; Wang, C. Nanoscale 2012, 4, 2839. doi: 10.1039/c2nr30299c  doi: 10.1039/c2nr30299c

    19. [19]

      Coluci, V. R.; Braga, S. F.; Legoas, S. B.; Galvao, D. S.; Baughman, R. H. Phys. Rev. B 2003, 68, 035430. doi: 10.1103/PhysRevB.68.035430  doi: 10.1103/PhysRevB.68.035430

    20. [20]

      Galv o, D. S.; Baughman, R. H.; Coluci, V. R. J. Chem. Phys. 2004, 121, 3228. doi: 10.1063/1.1772756  doi: 10.1063/1.1772756

    21. [21]

      Coluci, V. R.; Braga, S. F.; Legoas, S. B.; Galvao, D. S.; Baughman, R. H. Nanotechnology 2004, 15, S142. doi: 10.1088/0957-4484/15/4/006  doi: 10.1088/0957-4484/15/4/006

    22. [22]

      Enyashin, A. N.; Makurin, Y. N.; IvanoAkii, A. L. Carbon 2004, 42, 2081. doi: 10.1016/j.carbon.2004.04.014  doi: 10.1016/j.carbon.2004.04.014

    23. [23]

      Qian, X.; Ning, Z.; Li, Y.; Liu, H.; Ouyang, C.; Chen, Q.; Li, Y. Dalton Trans. 2012, 41, 730. doi: 10.1039/c1dt11641j  doi: 10.1039/c1dt11641j

    24. [24]

      Bu, H.; Zhao, M.; Wang, A.; Wang, X. Carbon 2013, 65, 341. doi: 10.1016/j.carbon.2013.08.035  doi: 10.1016/j.carbon.2013.08.035

    25. [25]

      Malko, D.; Neiss, C.; G rling, A. Phys. Rev. B 2012, 86, 045443. doi: 10.1103/PhysRevB.86.045443  doi: 10.1103/PhysRevB.86.045443

    26. [26]

      Malko, D.; Neiss, C.; Vi es, F.; G rling, A. Phys. Rev. Lett. 2012, 108, 086804. doi: 10.1103/PhysRevLett.108.086804  doi: 10.1103/PhysRevLett.108.086804

    27. [27]

      Ivanovskii, A. L. Prog. Solid State Chem. 2013, 41, 1. doi: 10.1016/j.progsolidstchem.2012.12.001  doi: 10.1016/j.progsolidstchem.2012.12.001

    28. [28]

      Sun, L.; Jiang, P. H.; Liu, H. J.; Fan, D. D.; Liang, J. H.; Wei, J.; Shi, J. Carbon 2015, 90, 255. doi: 10.1016/j.carbon.2015.04.037  doi: 10.1016/j.carbon.2015.04.037

    29. [29]

      Zheng, Q.; Luo, G.; Liu, Q.; Quhe, R.; Zheng, J.; Tang, K.; Lu, J. Nanoscale 2012, 4, 3990. doi: 10.1039/C2NR12026G  doi: 10.1039/C2NR12026G

    30. [30]

      Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 2000, 62, 11146. doi: 10.1103/PhysRevB.62.11146  doi: 10.1103/PhysRevB.62.11146

    31. [31]

      Narita, N.; Nagai, S.; Suzuki, S. Phys. Rev. B 2001, 64, 245408. doi: 10.1103/PhysRevB.64.245408  doi: 10.1103/PhysRevB.64.245408

    32. [32]

      Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951. doi: 10.1021/jp212181h  doi: 10.1021/jp212181h

    33. [33]

      Diederich, F. Nature 1994, 369, 199. doi: 10.1038/369199a0  doi: 10.1038/369199a0

    34. [34]

      Bunz, U. H.; Rubin, Y.; Tobe, Y. Chem. Soc. Rev. 1999, 28, 107. doi: 10.1039/a708900g  doi: 10.1039/a708900g

    35. [35]

      Chen, J.; Xi, J.; Wang, D.; Shuai, Z. J. Phys. Chem. Lett. 2013, 4, 1443. doi: 10.1021/jz4005587  doi: 10.1021/jz4005587

    36. [36]

      Pei, Y. Phys. B 2012, 407, 4436. doi: 10.1016/j.physb.2012.07.026  doi: 10.1016/j.physb.2012.07.026

    37. [37]

      Cui, H. J.; Sheng, X. L.; Yan, Q. B.; Zheng, Q. R.; Su, G. Phys. Chem. Chem. Phys. 2013, 15, 8179. doi: 10.1039/c3cp44457k  doi: 10.1039/c3cp44457k

    38. [38]

      Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. ACS Nano 2011, 5, 2593. doi: 10.1021/nn102472s  doi: 10.1021/nn102472s

    39. [39]

      Jiao, Y.; Du, A.; Hankel, M.; Zhu, Z.; Rudolph, V.; Smith, S. C. Chem. Commun. 2011, 47, 11843. doi: 10.1039/c1cc15129k  doi: 10.1039/c1cc15129k

    40. [40]

      Cranford, S. W.; Buehler, M. J. Nanoscale 2012, 4, 4587. doi: 10.1039/C2NR30921A  doi: 10.1039/C2NR30921A

    41. [41]

      Enyashin, A. N.; Ivanovskii, A. L. Phys. Status Solid B 2011, 248, 1879. doi: 10.1002/pssb.201046583  doi: 10.1002/pssb.201046583

    42. [42]

      Wang, S.; Yi, L.; Halpert, J. E.; Lai, X.; Liu, Y.; Cao, H.; Yu, R.; Wang, D.; Li, Y. Small 2012, 8, 265. doi: 10.1002/smll.201101686  doi: 10.1002/smll.201101686

    43. [43]

      Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. ACS Nano 2013, 7, 1504. doi: 10.1021/nn305288z  doi: 10.1021/nn305288z

    44. [44]

      Li, J.; Gao, X.; Liu, B.; Feng, Q; Li, X.; Huang, M.; Liu, Z. Zhang, J.; Tung, V.; Wu, L. J. Am. Chem. Soc. 2016, 138, 3954. doi: 10.1021/jacs.5b12758  doi: 10.1021/jacs.5b12758

    45. [45]

      Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Acc. Chem. Rev. 2017, 50, 2470. doi: 10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    46. [46]

      Inagaki, M.; Kang, F. J. Mater. Chem. A 2014, 2, 13193. doi: 10.1039/C4TA01183J  doi: 10.1039/C4TA01183J

    47. [47]

      Ketabi, N.; Tolhurst, T. M.; Leedahl, B.; Liu, H.; Li, Y.; Moewes, A. Carbon 2017, 123, 1. doi: 10.1016/j.carbon.2017.07.037  doi: 10.1016/j.carbon.2017.07.037

    48. [48]

      Li, Y.; Zhou, W.; Wang, H.; Xie, L.; Liang, Y.; Wei, F.; Idrobo, J. -C.; Pennycook S. J.; Dai, H. Nat. Nanotechnol. 2012, 7, 394. doi: 10.1038/NNANO.2012.72  doi: 10.1038/NNANO.2012.72

    49. [49]

      Zhang, N.; Yang, M. Q.; Liu, S.; Sun, Y.; Xu, Y. Chem. Rev. 2015, 115, 10307. doi: 10.1021/acs.chemrev.5b00267  doi: 10.1021/acs.chemrev.5b00267

    50. [50]

      Kumar, S. G.; Rao, K. K. Appl. Surf. Sci. 2017, 391, 124. doi: 10.1016/j.apsusc.2016.07.081  doi: 10.1016/j.apsusc.2016.07.081

    51. [51]

      Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782. doi: 10.1039/C1CS15172J  doi: 10.1039/C1CS15172J

    52. [52]

      Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. ACS Nano 2009, 4, 380. doi: 10.1021/nn901221k  doi: 10.1021/nn901221k

    53. [53]

      Thangavel, S.; Krishnamoorthy, K.; Krishnaswamy, V.; Raju, N.; Kim, S. J.; Venugopal, G. J. Phys. Chem. C 2015, 119, 22057. doi: 10.1021/acs.jpcc.5b06138  doi: 10.1021/acs.jpcc.5b06138

    54. [54]

      Jin, Z.; Zhou, Q.; Chen, Y.; Mao, P.; Li, H.; Liu, H.; Wang, J.; Li, Y. Adv. Mater. 2016, 28, 3697. doi: 10.1002/adma.201600354  doi: 10.1002/adma.201600354

    55. [55]

      Xu, J.; Li, J.; Yang, Q.; Xiong, Y.; Chen, C. Electrochim. Acta 2017, 251, 672. doi: 10.1016/j.electacta.2017.07.102  doi: 10.1016/j.electacta.2017.07.102

    56. [56]

      Wu, M.; Lin, X.; Wang, Y.; Wang, L.; Guo, W.; Qi, D.; Peng, X.; Hagfeldt, A.; Gr tzel, M.; Ma, T. J. Am. Chem. Soc. 2012, 134, 3419. doi: 10.1021/ja209657v  doi: 10.1021/ja209657v

    57. [57]

      Qi, H.; Yu, P.; Wang, Y.; Han, G.; Liu, H.; Yi, Y.; Mao, L. J. Am. Chem. Soc. 2015, 137, 5260. doi: 10.1021/ja5131337  doi: 10.1021/ja5131337

    58. [58]

      Ren, H.; Shao, H.; Zhang, L.; Guo, D.; Jin, Q.; Yu, R.; Wang, D. Adv. Energy Mater. 2015, 5. doi: 10.1002/aenm.201500296  doi: 10.1002/aenm.201500296

    59. [59]

      Li, J.; Cao, X.; Jiang, X.; Li, X. B.; Liu, Z.; Zhang, J.; Tung, C. T.; Wu, L. Z. ACS Catal. 2017, 7, 5209. doi: 10.1021/acscatal.7b01781  doi: 10.1021/acscatal.7b01781

    60. [60]

      Xue, Y.; Guo, Y.; Yi, Y.; Li, Y.; Liu, H.; Li, D.; Yang, W.; Li, Y. Nano Energy 2016, 30, 858. doi: 10.1016/j.nanoen.2016.09.005  doi: 10.1016/j.nanoen.2016.09.005

    61. [61]

      Xue, Y.; Li, J.; Xue, Z.; Li, Y.; Liu, H.; Li, D.; Yang, W.; Li, Y. ACS Appl. Mater. Interfaces 2016, 8, 31083. doi: 10.1021/acsami.6b12655  doi: 10.1021/acsami.6b12655

    62. [62]

      Shang, H.; Zuo, Z.; Li, L.; Wang, F.; Liu, H.; Li, Y.; Li, Y. Angew. Chem. Int. Ed. 2017, 130, 782. doi: 10.1002/anie.201711366  doi: 10.1002/anie.201711366

    63. [63]

      Zhang, S.; Liu, H.; Huang, C.; Cui, G.; Li, Y. Chem. Commum. 2015, 51, 1834. doi: 10.1039/c4cc08706b  doi: 10.1039/c4cc08706b

    64. [64]

      Huang, C.; Zhang, S.; Liu, H.; Li, Y.; Cui, G.; Li, Y. Nano Energy 2015, 11, 481. doi: 10.1016/j.nanoen.2014.11.036  doi: 10.1016/j.nanoen.2014.11.036

    65. [65]

      He, J.; Wang, N.; Cui, Z.; Du, H.; Fu, L.; Huang, C.; Yang, Z.; Shen, X.; Yi, Y.; Tu, Z.; Li, Y. Nat. Commun. 2017, 8, 1172. doi: 10.1038/s41467-017-01202-2.  doi: 10.1038/s41467-017-01202-2

    66. [66]

      Wang, N.; He, J.; Tu, T.; Yang, Z.; Zhao, F.; Li, X.; Huang, C.; Wang, K.; Jiu, T.; Yi, Y.; Li, Y. Nat. Commun. 2017, 8[1], 1172. doi: 10.1038/s41467-017-01202-2  doi: 10.1038/s41467-017-01202-2

    67. [67]

      Sun, C.; Searles, D. J. J. Phys. Chem. C 2012, 116, 26222. doi: 10.1021/jp309638z  doi: 10.1021/jp309638z

    68. [68]

      Seif, A.; López, M. J.; Granja-DelRío, A.; Azizi, K.; Alonso, J. A. Phys. Chem. Chem. Phys. 2017, 19, 19094. doi: 10.1039/C7CP03263C  doi: 10.1039/C7CP03263C

    69. [69]

      Lin, Z. Carbon 2015, 86, 301. doi: 10.1016/j.carbon.2015.02.014  doi: 10.1016/j.carbon.2015.02.014

    70. [70]

      Lu, Z.; Li, S.; Lv, P.; He, C.; Ma, D.; Yang, Z. Appl. Surf. Sci. 2016, 360, 1. doi: 10.1016/j.apsusc.2015.10.219  doi: 10.1016/j.apsusc.2015.10.219

    71. [71]

      Pan, Y.; Wang, Y.; Wang, L.; Zhong, H.; Quhe, R.; Ni, Z.; Ye, M.; Mei, W.; Shi, J.; Guo, W.; Yang, J.; Lu, J. Nanoscale 2015, 7, 2116. doi: 10.1039/C4NR06541G  doi: 10.1039/C4NR06541G

    72. [72]

      Azizi, E.; Tehrani, Z. A.; Jamshidi, Z. J. Mol. Graphics Modell. 2014, 54, 80. doi: 10.1016/j.jmgm.2014.09.004  doi: 10.1016/j.jmgm.2014.09.004

    73. [73]

      Chen, Z.; Wen, Z.; Jiang, Q. J. Phys. Chem. C 2017, 121, 3463. doi: 10.1021/acs.jpcc.6b12434  doi: 10.1021/acs.jpcc.6b12434

    74. [74]

      Ma, D.; Li, T.; Wang, Q.; Yang, G.; He, C.; Ma, B.; Lu, Z. Carbon 2015, 95, 756. doi: 10.1016/j.carbon.2015.09.008  doi: 10.1016/j.carbon.2015.09.008

    75. [75]

      Lin, Z. Carbon 2016, 108, 343. doi: 10.1016/j.carbon.2016.07.040  doi: 10.1016/j.carbon.2016.07.040

    76. [76]

      Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H. J. Am. Chem. Soc. 2013, 135, 5998. doi: 10.1021/ja4019572  doi: 10.1021/ja4019572

    77. [77]

      Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhao, H. Adv. Mater. 2017, 29. doi: 10.1002/adma.201606755  doi: 10.1002/adma.201606755

    78. [78]

      Hodes, G. Science 2013, 342, 317. doi: 10.1126/science.1245473  doi: 10.1126/science.1245473

    79. [79]

      Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395, doi: 10.1038/nature12509  doi: 10.1038/nature12509

    80. [80]

      Correa-Baena, J. -P.; Saliba, M.; Buonassisi, T.; Gr tzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Science 2017, 739. doi: 10.1126/science.aam6323  doi: 10.1126/science.aam6323

    81. [81]

      Sabiba, M.; Matsui, T.; Seo, J. -Y.; Domanski, K.; Correa-Baena, J. -P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gr tzel, M. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/c5ee03874j  doi: 10.1039/c5ee03874j

    82. [82]

      Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Fang, J.; Li, Y. Nano Lett. 2015, 15, 2756. doi: 10.1021/acs.nanolett.5b00787  doi: 10.1021/acs.nanolett.5b00787

    83. [83]

      Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, D.; Meng Q.; Li, Y. Adv. Energy Mater. 2015, 5. doi: 10.1002/aenm.201401943  doi: 10.1002/aenm.201401943

    84. [84]

      Jin, Z.; Yuan, M.; Li, H.; Yang, H.; Zhou, Q.; Liu, H.; Lan, X.; Liu, M.; Wang, J.; Sargent, E. H.; Li, Y. Adv. Funct. Mater. 2016, 26, 5284. doi: 10.1002/adfm.201601570  doi: 10.1002/adfm.201601570

    85. [85]

      Du, H., Deng, Z., Lü, Z., Yin, Y., Yu, L., Wu, H.; Chen, Z.; Zou, Y.; Wang, Y.; Liu, H.; Li, Y. Synth. Met. 2011, 161, 2055. doi: 10.1016/j.synthmet.2011.04.015  doi: 10.1016/j.synthmet.2011.04.015

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(10)
  • Abstract views(596)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return