Citation: YOSHII Noriyuki, KOMORI Mika, KAWADA Shinji, TAKABAYASHI Hiroaki, FUJIMOTO Kazushi, OKAZAKI Susumu. Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1163-1170. doi: 10.3866/PKU.WHXB201802271 shu

Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations

  • Corresponding author: YOSHII Noriyuki, yoshii@ccs.engg.nagoya-u.ac.jp OKAZAKI Susumu, okazaki@apchem.nagoya-u.ac.jp
  • Received Date: 25 December 2017
    Revised Date: 2 February 2018
    Accepted Date: 19 February 2018
    Available Online: 27 October 2018

    Fund Project: This work was supported by FLAGSHIP2020, MEXT within Priority Study 5 (Development of New Fundamental Technologies for High-Efficiency Energy Creation, Conversion/Storage and Use) Using Computational Resources of the K Computer Provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research Project (hp170241). This work was also funded by MEXT KAKENHI Grant Number 17K04758 (N.Y.)

  • Surfactant molecules, when dispersed in solution, have been shown to spontaneously form aggregates. Our previous studies on molecular dynamics (MD) calculations have shown that ionic sodium dodecyl sulfate molecules quickly aggregated even when the aggregation number is small. The aggregation rate, however, decreased for larger aggregation numbers. In addition, studies have shown that micelle formation was not completed even after a 100 ns-long MD run (Chem. Phys. Lett. 2016, 646, 36). Herein, we analyze the free energy change of micelle formation based on chemical species model combined with molecular dynamics calculations. First, the free energy landscape of the aggregation, ΔGi+j, where two aggregates with sizes i and j associate to form the (i + j)-mer, was investigated using the free energy of micelle formation of the i-mer, Gi, which was obtained through MD calculations. The calculated ΔGi+j was negative for all the aggregations where the sum of DS ions in the two aggregates was 60 or less. From the viewpoint of chemical equilibrium, aggregation to the stable micelle is desired. Further, the free energy profile along possible aggregation pathways was investigated, starting from small aggregates and ending with the complete thermodynamically stable micelles in solution. The free energy profiles, G(l, k), of the aggregates at l-th aggregation path and k-th state were evaluated by the formation free energy \begin{document}$\sum\limits_i {{n_i}\left( {l, k} \right)G_i^\dagger } $\end{document} and the free energy of mixing \begin{document}$\sum\limits_i {{n_i}(l, k){k_B}Tln({n_i}(l, k)/n(l, k))} $\end{document}, where ni(l, k) is the number of i-mer in the system at the l-th aggregation path and k-th state, with \begin{document}$n\left( {l, k} \right) = \sum\limits_i {{n_i}\left( {l, k} \right)} $\end{document}. All the aggregation pathways were obtained from the initial state of 12 pentamers to the stable micelle with i = 60. All the calculated G(l, k) values monotonically decreased with increasing k. This indicates that there are no free energy barriers along the pathways. Hence, the slowdown is not due to the thermodynamic stability of the aggregates, but rather the kinetics that inhibit the association of the fragments. The time required for a collision between aggregates, one of the kinetic factors, was evaluated using the fast passage time, tFPT. The calculated tFPT was about 20 ns for the aggregates with N = 31. Therefore, if aggregation is a diffusion-controlled process, it should be completed within the 100 ns-simulation. However, aggregation does not occur due to the free energy barrier between the aggregates, that is, the repulsive force acting on them. This may be caused by electrostatic repulsions produced by the overlap of the electric double layers, which are formed by the negative charge of the hydrophilic groups and counter sodium ions on the surface of the aggregates.
  • 加载中
    1. [1]

      Tanford, C. J. Phys. Chem. 1974, 78, 2469. doi: 10.1021/j100617a012  doi: 10.1021/j100617a012

    2. [2]

      Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed. ; Academic Press: London, UK, 1992.

    3. [3]

      Everett, D. H. Basic Principles of Colloid Science; The Royal Society of Chemistry: London, UK, 1988.

    4. [4]

      Puvvada, S.; Blankschtein, D. J. Chem. Phys. 1990, 92, 3710. doi: 10.1063/1.457829  doi: 10.1063/1.457829

    5. [5]

      Christopher, P. S.; Oxtoby, D. W. J. Chem. Phys. 2003, 118, 5665. doi: 10.1063/1.1554394  doi: 10.1063/1.1554394

    6. [6]

      Maibaum, L.; Dinner, A. R.; Chandler, D. J. Phys. Chem. B 2004, 108, 6778. doi: 10.1021/jp037487t  doi: 10.1021/jp037487t

    7. [7]

      Yoshii, N.; Iwahashi, K.; Okazaki, S. J. Chem. Phys. 2006, 124, 184901. doi: 10.1063/1.2179074  doi: 10.1063/1.2179074

    8. [8]

      Pool, R.; Bolhuis, P. G. J. Chem. Phys. 2007, 126, 244703. doi: 10.1063/1.2741513  doi: 10.1063/1.2741513

    9. [9]

      Burov, S. V.; Shchekin, A. K. J. Chem. Phys. 2010, 133, 244109. doi: 10.1063/1.3519815  doi: 10.1063/1.3519815

    10. [10]

      Verde, A. V.; Frenkel, D. Soft Matter 2010, 6, 3815. doi: 10.1039/C0SM00011F  doi: 10.1039/C0SM00011F

    11. [11]

      Bernardino, K.; de Moura, A. F. J. Phys. Chem. B 2013, 117, 7324. doi: 10.1021/jp312840y  doi: 10.1021/jp312840y

    12. [12]

      Marrink, S. J.; Tieleman, D. P.; Mark, A. E. J. Phys. Chem. B 2000, 104, 12165. doi: 10.1021/jp001898h  doi: 10.1021/jp001898h

    13. [13]

      Lazaridis, T.; Mallik, B.; Chen, Y. J. Phys. Chem. B 2005, 109, 15098. doi: 10.1021/jp0516801  doi: 10.1021/jp0516801

    14. [14]

      Tieleman, D. P.; van der Spoel, D.; Berendsen, H. J. C. J. Phys. Chem. B 2000, 104, 6380. doi: 10.1021/jp001268f  doi: 10.1021/jp001268f

    15. [15]

      Bond, P. J.; Cuthbertson, J. M.; Deol, S. S.; Sansom, M. S. P. J. Am. Chem. Soc. 2004, 126, 15948. doi: 10.1021/ja044819e  doi: 10.1021/ja044819e

    16. [16]

      Jusufi, A.; Hynninen, A. -P.; Panagiotopoulos, A. Z. J. Phys. Chem. B 2008, 112, 13783. doi: 10.1021/jp8043225  doi: 10.1021/jp8043225

    17. [17]

      Sanders, S.; Sammalkorpi, M.; Panagiotopoulos, A. Z. J. Phys. Chem. B 2012, 116, 2430. doi: 10.1021/jp209207p  doi: 10.1021/jp209207p

    18. [18]

      Sammalkorpi, M.; Karttunen, M.; Haataja, M. J. Phys. Chem. B 2007, 111, 11722. doi: 10.1021/jp072587a  doi: 10.1021/jp072587a

    19. [19]

      Cheong, D.; Panagiotopoulos, A. Z. Langmuir 2006, 22, 4076. doi: 10.1021/la053511d  doi: 10.1021/la053511d

    20. [20]

      Pool, R.; Bolhuis, P. G. J. Phys. Chem. B 2005, 109, 6650. doi: 10.1021/jp045576f  doi: 10.1021/jp045576f

    21. [21]

      Pool, R.; Bolhuis, P. G. Phys. Rev. Lett. 2006, 97, 018302. doi: 10.1103/PhysRevLett.97.018302  doi: 10.1103/PhysRevLett.97.018302

    22. [22]

      Pool, R.; Bolhuis, P. G. Phys. Chem. Chem. Phys. 2006, 8, 941. doi: 10.1039/B512960E  doi: 10.1039/B512960E

    23. [23]

      Kawada, S.; Komori, M.; Fujimoto, K.; Yoshii, N.; Okazaki, S. Chem. Phys. Lett. 2016, 646, 36. doi: 10.1016/j.cplett.2015.12.062  doi: 10.1016/j.cplett.2015.12.062

    24. [24]

      Fujimoto, K.; Kubo, Y.; Kawada, S.; Yoshii, N.; Okazaki, S. Mol. Simul. 2017, 43, 13. doi: 10.1080/08927022.2017.1328557  doi: 10.1080/08927022.2017.1328557

    25. [25]

      Lifshitz, I. M.; Slyozov, V. V. J. Phys. Chem. Solids 1961, 19, 35. doi: 10.1016/0022-3697(61)90054-3  doi: 10.1016/0022-3697(61)90054-3

    26. [26]

      Szabo, A.; Schulten, K.; Schulten, Z. J. Chem. Phys. 1980, 72, 4350. doi: 10.1063/1.439715  doi: 10.1063/1.439715

    27. [27]

      Moore, W. J. Physical Chemistry, 4th ed. ; Prentice Hall, Inc. : Upper Saddle River, NJ, USA, 1972.

    28. [28]

      Everett, D. H. Colloids Surf. 1986, 21, 41. doi: 10.1016/0166-6622(86)80081-6  doi: 10.1016/0166-6622(86)80081-6

    29. [29]

      Yoshii, N.; Okazaki, S. Chem. Phys. Lett. 2006, 425, 58. doi: 10.1016/j.cplett.2006.05.004  doi: 10.1016/j.cplett.2006.05.004

    30. [30]

      Yoshii, N.; Okazaki, S. Chem. Phys. Lett. 2006, 426, 66. doi: 10.1016/j.cplett.2006.05.038  doi: 10.1016/j.cplett.2006.05.038

    31. [31]

      Aniansson, E. A. G.; Wall, S. N. J. Phys. Chem. 1974, 78, 1024. doi: 10.1021/j100603a016  doi: 10.1021/j100603a016

    32. [32]

      Kestin, J.; Sokolov, M.; Wakeham, W. A. J. Phys. Chem. Ref. Data 1978, 7, 941. doi: 10.1063/1.555581  doi: 10.1063/1.555581

    33. [33]

      The value obtained in Eq. (1) of Ref. 28 was used.

    34. [34]

      Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 1989.

    35. [35]

      Kawada, S.; Fujimoto, K.; Yoshii, N.; Okazaki, S. J. Chem. Phys. 2017, 147, 084903. doi: 10.1063/1.4998549  doi: 10.1063/1.4998549

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    3. [3]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    4. [4]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    5. [5]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    6. [6]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    7. [7]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    8. [8]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    9. [9]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    10. [10]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    13. [13]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    14. [14]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    15. [15]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    16. [16]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    17. [17]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    18. [18]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    19. [19]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(13)
  • Abstract views(433)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return