One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol
- Corresponding author: LIU Guoliang, liugl@whu.edu.cn HONG Xinlin, hongxl@whu.edu.cn
Citation: LIU Yanfang, HU Bing, YIN Yazhi, LIU Guoliang, HONG Xinlin. One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 223-229. doi: 10.3866/PKU.WHXB201802263
Lewis, S. A.; Wilburn, J. P.; Wellons, M. S.; Cliffel, D. E.; Lukehart, C. M. Phys. Status Solidi A 2015, 212, 2903. doi: 10.1002/pssa.201532256
doi: 10.1002/pssa.201532256
Chen, Y.; Yang, X. Y.; Zhang, P.; Liu, D. S.; Gui, J. Z.; Peng, H. L.; Liu, D. Acta Phys. -Chim. Sin. 2017, 33, 2082.
doi: 10.3866/PKU.WHXB201705176
Xu, B. Q.; Wei, J. M.; Yu, Y. T.; Li, Y.; Li, J. L.; Zhu, Q. M. J. Phys. Chem. B 2003, 107, 5203. doi: 10.1023/A:1021419929938
doi: 10.1023/A:1021419929938
Wang, Y. Acta Phys. -Chim. Sin. 2017, 33, 857.
doi: 10.3866/PKU.WHXB201703172
Rathi, A. K.; Gawande, M. B.; Ranc, V.; Pechousek, J.; Petr, M.; Cepe, K.; Varmab, R. S.; Zboril, R. Catal. Sci. Technol. 2016, 6, 152. doi: 10.1039/C5CY00956A
doi: 10.1039/C5CY00956A
Nadagouda, M. N.; Varma, R. S. Biomacromolecules 2007, 8, 2762. doi: 10.1021/bm700446p
doi: 10.1021/bm700446p
Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R. Nano Lett. 2012, 12, 4584. doi: 10.1021/nl301831h
doi: 10.1021/nl301831h
Liu, T. X.; Li, B. X.; Hao, Y. G.; Han, F.; Zhang, L. L.; Hu, L. Y. Appl. Catal. B-Environ. 2015, 165, 378. doi: 10.1016/j.apcatb.2014.10.041
doi: 10.1016/j.apcatb.2014.10.041
Wang, D. H.; Kou, R.; Choi, D.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L.; et al. ACS Nano 2010, 4, 1587. doi: 10.1021/nn901819n
doi: 10.1021/nn901819n
Polarz, S.; Neues, F.; van den Berg, M. W. E.; Grunert, W.; Khodeir, L. J. Am. Chem. Soc. 2005, 127, 12028. doi: 10.1021/ja0516514
doi: 10.1021/ja0516514
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; H vecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831
doi: 10.1126/science.1219831
Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. Catal. Today 2009, 148, 221. doi: 10.1016/j.cattod.2009.08.015
doi: 10.1016/j.cattod.2009.08.015
Wang, G. Y.; Zhang, W. X.; Lian, H. L.; Jiang, D. Z.; Wu, T. H. Appl. Catal. A 2003, 239, 1. doi: 10.1016/S0926-860X(02)00098-4
doi: 10.1016/S0926-860X(02)00098-4
Da Costa-Serra, J. F.; Guil-López, R.; Chica, A. Int. J. Hydrogen Energy 2010, 35, 6709. doi: 10.1016/j.ijhydene.2010.04.013
doi: 10.1016/j.ijhydene.2010.04.013
Huang, L.; Kramer, G. J.; Wieldraaijer, W.; Brands, D. S.; Poels, E. K.; Castricum, H. L.; Bakker, H. Catal. Lett. 1997, 48, 55. doi: 10.1023/A:1019014701674
doi: 10.1023/A:1019014701674
Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. doi: 10.1021/ja00072a025
doi: 10.1021/ja00072a025
Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. doi: 10.1126/science.287.5460.1989
doi: 10.1126/science.287.5460.1989
Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Nano Res. 2010, 3, 244. doi: 10.1007/s12274-010-1027-z
doi: 10.1007/s12274-010-1027-z
Zhang, H. Y.; Xie, Y.; Sun, Z. Y.; Tao, R. T.; Huang, C. L.; Zhao, Y. F.; Liu, Z. M. Langmuir 2011, 27, 1152. doi: 10.1021/la1034728
doi: 10.1021/la1034728
Xie, Y.; Ding, K. L.; Liu, Z. M.; Tao, R. T.; Sun, Z. Y.; Zhang, H. Y.; An, G. M. J. Am. Chem. Soc. 2009, 131, 6648. doi: 10.1021/ja900447d
doi: 10.1021/ja900447d
Wang, Y.; Ren, J. W.; Deng, K.; Gui, L. L.; Tang, Y. Q. Chem. Mater. 2000, 12, 1622. doi: 10.1002/chin.200041202
doi: 10.1002/chin.200041202
Fu, X. Y.; Wang, Y.; Wu, N. Z.; Gui, L. L.; Tang, Y. Q. J. Mater. Chem. 2003, 13, 1192. doi: 10.1039/B211747A
doi: 10.1039/B211747A
Zhang, J. L.; Ji, H.; Wei, Y. G.; Wang, Y.; Wu, N. Z. J. Phys. Chem. C 2008, 112, 10688. doi: 10.1021/jp8003294
doi: 10.1021/jp8003294
Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. J. Am. Chem. Soc. 2011, 133, 3693. doi: 10.1021/ja110313d
doi: 10.1021/ja110313d
Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Nano Lett. 2002, 2, 165. doi: 10.1021/nl010093y
doi: 10.1021/nl010093y
Ranjbar, M., Taher, M.A.; Sam, A. J. Clust. Sci. 2014, 25, 1657. doi: 10.1007/s10876-014-0764-7
doi: 10.1007/s10876-014-0764-7
Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955. doi: 10.1021/jp0379953
doi: 10.1021/jp0379953
Jing, L. Q.; Xu, Z. L.; Sun, X. J.; Shang, J.; Cai, W. M. Appl. Surf. Sci. 2001, 180, 308. doi: 10.1016/S0169-4332(01)00365-8
doi: 10.1016/S0169-4332(01)00365-8
Batista, J.; Pintar, A.; Mandrino, D.; Jenko, M.; Martin, V. Appl. Catal. A-Gen. 2001, 206, 113. doi: 10.1016/S0926-860X(00)00589-5
doi: 10.1016/S0926-860X(00)00589-5
Matthey, D.; Wang, J. G.; Wendt, S.; Matthiesen, J.; Schaub, R.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2007, 315, 1692. doi: 10.1126/science.1135752
doi: 10.1126/science.1135752
Qiao, B. T.; Wang, A.Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095
doi: 10.1038/nchem.1095
Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc. 2004, 126, 8028. doi: 10.1021/ja0495819
doi: 10.1021/ja0495819
Chinchen, G. C.; Denny, P. J.; Jennings, J. R.; Spencer, M. S.; Waugh, K. C. Appl. Catal. 1988, 36, 1. doi: 10.1016/S0166-9834(00)80103-7
doi: 10.1016/S0166-9834(00)80103-7
Liang, X. L.; Dong, X.; Lin, G. D.; Zhang, H. B. Appl. Catal. B- Environ. 2009, 88, 315. doi: 10.1016/j.apcatb.2008.11.018
doi: 10.1016/j.apcatb.2008.11.018
Prüsse, U.; Vorlop, K. D. J. Mol. Catal. A-Chem. 2001, 173, 313. doi: 10.1016/S1381-1169(01)00156-X
doi: 10.1016/S1381-1169(01)00156-X
Liao, F. L.; Huang, Y. Q.; Ge, J. W.; Zheng, W. R.; Tedsree, K.; Collier, P.; Hong, X. L.; Tsang, S. C. Angew. Chem. Int. Ed. 2011, 50, 2162. doi: 10.1002/anie.201007108
doi: 10.1002/anie.201007108
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136