Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations
- Corresponding author: LI Xiaoxia, xxia@ipe.ac.cn
Citation: REN Chunxing, LI Xiaoxia, GUO Li. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1151-1162. doi: 10.3866/PKU.WHXB201802261
Nielsen, A. T.; Chafin, A. P.; Christian, S. L.; Moore, D. W.; Nadler, M. P.; Nissan, R. A.; Vanderah, D. J.; Gilardi, R. D.; George, C. F.; Flippen-Anderson, J. L. Tetrahedron 1998, 54 (39), 11793. doi: 10.1016/S0040-4020(98)83040-8
doi: 10.1016/S0040-4020(98)83040-8
(a) Wenograd, J. Trans. Faraday Soc. 1961, 57 (9), 1612. doi: 10.1039/tf9615701612
(b) Brill, T. B. ; James, K. J. Chem. Rev. 1993, 93 (8), 2667.
doi: 10.1021/cr00024a005
(c) Botcher, T. R. ; Wight, C. A. J. Phys. Chem. 1994, 98 (21), 5441.
doi: 10.1021/j100072a009
(d) Politzer, P. ; Boyd, S. Struct. Chem. 2002, 13 (2), 105. doi: 10.1023/a:1015748330357
Patil, D. G. ; Brill, T. B. Combust. Flame 1991, 87 (2), 145. doi: 10.1016/0010-2180(91)90164-7
Patil, D. G.; Brill, T. B. Combust. Flame 1993, 92 (4), 456. doi: 10.1016/0010-2180(93)90155-v
doi: 10.1016/0010-2180(93)90155-v
(a) Korsounskii, B. L. ; Nedel'ko, V. V. ; Chukanov, N. V. ; Larikova, T. S. ; Volk, F. Russ. Chem. Bull. 2000, 49 (5), 812. doi: 10.1007/bf02494701
(b) Nedel'ko, V. V. ; Chukanov, N. V. ; Raevskii, A. V. ; Korsounskii, B. L. ; Larikova, T. S. ; Kolesova, O. I. ; Volk, F. Prop. Explos. Pyrotech. 2000, 25 (5), 255. doi: 10.1002/1521-4087(200011)25:5<255::aid-prep255>3.0.co;2-8
Naik, N. H.; Gore, G. M.; Gandhe, B. R.; Sikder, A. K. J. Hazard. Mater. 2008, 159 (2–3), 630. doi: 10.1016/j.jhazmat.2008.02.049
doi: 10.1016/j.jhazmat.2008.02.049
Okovytyy, S.; Kholod, Y.; Qasim, M.; Fredrickson, H.; Leszczynski, J. J. Phys. Chem. A 2005, 109 (12), 2964. doi: 10.1021/jp045292v
doi: 10.1021/jp045292v
Isayev, O.; Gorb, L.; Qasim, M.; Leszczynski, J. J. Phys. Chem. B 2008, 112 (35), 11005. doi: 10.1021/jp804765m
doi: 10.1021/jp804765m
Xue, X.; Wen, Y.; Zhang, C. J. Phys. Chem. C 2016, 120 (38), 21169. doi: 10.1021/acs.jpcc.6b05228
doi: 10.1021/acs.jpcc.6b05228
(a) Guo, D. Z. ; An, Q. ; Zybin, S. V. ; Goddard, W. A. ; Huang, F. L. ; Tang, B. J. Mater. Chem. A 2015, 3 (10), 5409. doi: 10.1039/c4ta06858k
(b) Xue, X. ; Ma, Y. ; Zeng, Q. ; Zhang, C. J. Phys. Chem. C 2017, 121 (9), 4899. doi: doi: 10.1021/acs.jpcc.7b00698
Yan, Q. -L.; Zeman, S.; Sanchez-Jimenez, P. E.; Zhang, T. -L.; Perez-Maqueda, L. A.; Elbeih, A. J. Phys. Chem. C 2014, 118 (40), 22881. doi: 10.1021/jp505955n
doi: 10.1021/jp505955n
Zhang, L. Z.; Zybin, S. V.; van Duin, A. C. T.; Goddard, W. A. J. Energ. Mater. 2010, 28, 92. doi: 10.1080/07370652.2010.504682
doi: 10.1080/07370652.2010.504682
(a) Strachan, A. ; van Duin, A. C. T. ; Chakraborty, D. ; Dasgupta, S. ; Goddard, W. A. Phys. Rev. Lett. 2003, 91 (9). doi: 10.1103/PhysRevLett.91.098301
(b) An, Q. ; Liu, Y. ; Zybin, S. V. ; Kim, H. ; Goddard, W. A. J. Phys. Chem. C 2012, 116 (18), 10198. doi: 10.1021/jp300711m
Wood, M. A.; van Duin, A. C. T.; Strachan, A. J. Phys. Chem. A 2014, 118 (5), 885. doi: 10.1021/jp406248m
doi: 10.1021/jp406248m
(a) Furman, D. ; Kosloff, R. ; Dubnikova, F. ; Zybin, S. V. ; Goddard, W. A., Ⅲ; Rom, N. ; Hirshberg, B. ; Zeiri, Y. J. Am. Chem. Soc. 2014, 136 (11), 4192. doi: 10.1021/ja410020f
(b) Strachan, A. ; Kober, E. M. ; van Duin, A. C. T. ; Oxgaard, J. ; Goddard, W. A. J. Chem. Phys. 2005, 122 (5). doi: 10.1063/1.1831277
(c) Zhou, T. T. ; Liu, L. C. ; Goddard, W. A. ; Zybin, S. V. ; Huang, F. L. Phys. Chem. Chem. Phys. 2014, 16 (43), 23779. doi: 10.1039/c4cp03781b
Li, X.; Mo, Z.; Liu, J.; Guo, L. Mol. Simulat. 2015, 41 (1–3), 13. doi: 10.1080/08927022.2014.913789
doi: 10.1080/08927022.2014.913789
Foltz, M. F.; Coon, C. L.; Garcia, F.; Nichols, A. L. Prop. Explos. Pyrotech. 1994, 19 (1), 19. doi: 10.1002/prep.19940190105
doi: 10.1002/prep.19940190105
(a) Turcotte, R. ; Vachon, M. ; Kwok, Q. S. M. ; Wang, R. ; Jones, D. E. G. Thermochim. Acta 2005, 433 (1–2), 105. doi: 10.1016/j.tca.2005.02.021
(b) Irikura, K. K. ; Johnson, R. D. J. Phys. Chem. A 2006, 110 (51), 13974. doi: 10.1021/jp065611d
(a) Bolton, O. ; Matzger, A. J. Angew. Chem. Int. Ed. 2011, 50 (38), 8960. doi: 10.1002/anie.201104164
(b) Bolton, O. ; Simke, L. R. ; Pagoria, P. F. ; Matzger, A. J. Cryst. Growth Des. 2012, 12 (9), 4311. doi: 10.1021/cg3010882
(c) Wang, Y. ; Yang, Z. ; Li, H. ; Zhou, X. ; Zhang, Q. ; Wang, J. ; Liu, Y. Prop. Explos. Pyrotech. 2014, 39 (4), 590. doi: 10.1002/prep.201300146
(d) Yang, Z. ; Li, H. ; Zhou, X. ; Zhang, C. ; Huang, H. ; Li, J. ; Nie, F. Cryst. Growth Des. 2012, 12 (11), 5155. doi: 10.1021/cg300955q
doi: http://accelrys.com/products/materials-studio/ (accessed Mar 13; 2016).
Ou, Y. X.; Jia, H. P.; Xu, Y. J.; Chen, B. R.; Fan, G. Y.; Liu, L. H.; Zheng, F. P.; Pan, Z. L.; Wang, C. Sci. China-Chem. 1999, 42 (2), 217. doi: 10.1007/bf02875520
doi: 10.1007/bf02875520
Liu, L.; Liu, Y.; Zybin, S. V.; Sun, H.; Goddard, W. A., Ⅲ. J. Phys. Chem. A 2011, 115 (40), 11016. doi: 10.1021/jp201599t
doi: 10.1021/jp201599t
Sandia National Laboratories; LAMMPS. doi: http://lammps.sandia.gov/.
Liu, J.; Li, X.; Guo, L.; Zheng, M.; Han, J.; Yuan, X.; Nie, F.; Liu, X. J. Mol. Graph. Model. 2014, 53, 13. doi: 10.1016/j.jmgm.2014.07.002
doi: 10.1016/j.jmgm.2014.07.002
Zheng, M.; Li, X.; Nie, F.; Guo, L. Energy Fuels 2017, 31 (4), 3675. doi: 10.1021/acs.energyfuels.6b03243
doi: 10.1021/acs.energyfuels.6b03243
Liu, X.; Li, X.; Liu, J.; Wang, Z.; Kong, B.; Gong, X.; Yang, X.; Lin, W.; Guo, L. Polym. Degrad. Stab. 2014, 104, 62. doi: 10.1016/j.polymdegradstab.2014.03.022
doi: 10.1016/j.polymdegradstab.2014.03.022
(a) Zhang, T. ; Li, X. ; Qiao, X. ; Zheng, M. ; Guo, L. ; Song, W. ; Lin, W. Energy Fuels 2016, 30 (4), 3140. doi: 10.1021/acs.energyfuels.6b00247
(b) Zhang, T. ; Li, X. ; Guo, L. Langmuir 2017, 33 (42), 11646. doi: 10.1021/acs.langmuir.7b02053
Zheng, M.; Wang, Z.; Li, X.; Qiao, X.; Song, W.; Guo, L. Fuel 2016, 177, 130. doi: 10.1016/j.fuel.2016.03.008
doi: 10.1016/j.fuel.2016.03.008
Wang, Z. -M.; Zheng, M.; Xie, Y. -B.; Li, X. -X.; Zeng, M.; Cao, H. -B.; Guo, L. Acta Phys. -Chim. Sin. 2017, 33 (7), 1399.
doi: 10.3866/PKU.WHXB201704132
Liu, X. -L.; Li, X. -X.; Han, S.; Qiao, X. -J.; Zhong, B. -J.; Guo, L. Acta Phys. -Chim. Sin. 2016, 32 (6), 1424.
doi: 10.3866/PKU.WHXB201603233
Liu, X.; Li, X.; Nie, F.; Guo, L. Energy Fuels. 2017, 31 (2), 1608. doi: 10.1021/acs.energyfuels.6b02508
doi: 10.1021/acs.energyfuels.6b02508
Han, S.; Li, X.; Nie, F.; Zheng, M.; Liu, X.; Guo, L. Energy Fuels2017, 31 (8), 8434. doi: 10.1021/acs.energyfuels.7b01194
doi: 10.1021/acs.energyfuels.7b01194
Simpson, R. L. ; Urtiew, P. A. ; Ornellas, D. L. ; Moody, G. L. ; Scribner, K. F. J. ; Hoffman, D. M. Prop. Explos. Pyrotech. 1997, 22 (5), 249. doi: 10.1002/prep.19970220502
Zhou, T.; Song, H.; Liu, Y.; Huang, F. Phys. Chem. Chem. Phys. 2014, 16 (27), 13914. doi: 10.1039/c4cp00890a
doi: 10.1039/c4cp00890a
Budzien, J.; Thompson, A. P.; Zybin, S. V. J. Phys. Chem. B 2009, 113 (40), 13142. doi: 10.1021/jp9016695
doi: 10.1021/jp9016695
(a) Zhou, T. T. ; Lou, J. F. ; Song, H. J. ; Huang, F. L. Phys. Chem. Chem. Phys. 2015, 17 (12), 7924. doi: 10.1039/c4cp05575f
(b) Zhou, T. T. ; Zhang, Y. G. ; Lou, J. F. ; Song, H. J. ; Huang, F. L. RSC Adv. 2015, 5 (12), 8609. doi: 10.1039/c4ra09943e
Yinon, J.; Yost, R. A.; Bulusu, S. J. Chromatogr. A 1994, 688 (1–2), 231. doi: 10.1016/0021-9673(94)00827-2
doi: 10.1016/0021-9673(94)00827-2
Behrens, R.; Bulusu, S. J. Phys. Chem. 1992, 96 (22), 8891. doi: 10.1021/j100201a037
doi: 10.1021/j100201a037
(a) Behrens, R. ; Bulusu, S. J. Phys. Chem. 1992, 96 (22), 8877. doi: 10.1021/j100201a036
(b) Chakraborty, D. ; Muller, R. P. ; Dasgupta, S. ; Goddard, W. A. J. Phys. Chem. A 2001, 105 (8), 1302. doi: 10.1021/jp0026181
(c) Peng, L. -J. ; Yao, Q. ; Wang, J. -B. ; Li, Z. -R. ; Zhu, Q. ; Li, X. -Y. Acta Phys. -Chim. Sin. 2017, 33 (4), 745.
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Hong Chen , Mao-Yin Ran , Long-Hua Li , Xin-Tao Wu , Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008