Citation: REN Chunxing, LI Xiaoxia, GUO Li. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1151-1162. doi: 10.3866/PKU.WHXB201802261 shu

Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations

  • Corresponding author: LI Xiaoxia, xxia@ipe.ac.cn
  • Received Date: 3 January 2018
    Revised Date: 30 January 2018
    Accepted Date: 9 February 2018
    Available Online: 26 October 2018

    Fund Project: the National Natural Science Foundation of China 21373227The project was supported by the National Natural Science Foundation of China (21373227)

  • The thermal decomposition of condensed CL-20 was investigated using reactive force field molecular dynamics (ReaxFF MD) simulations of a super cell containing 128 CL-20 molecules at 800–3000 K. The VARxMD code previously developed by our group is used for detailed reaction analysis. Various intermediates and comprehensive reaction pathways in the thermal decomposition of CL-20 were obtained. Nitrogen oxides are the major initial decomposition products, generated in a sequence of NO2, NO3, NO, and N2O. NO2 is the most abundant primary product and is gradually consumed in subsequent secondary reactions to form other nitrogen oxides. NO3 is the second most abundant intermediate in the early stages of CL-20 thermolysis. However, it is unstable and quickly decomposes at high temperatures, while other nitrogen oxides remain. At all temperatures, the unimolecular pathways of N―NO2 bond cleavage and ring-opening C―N bond scission dominate the initial decomposition of condensed CL-20. The cleavage of the N―NO2 bond is greatly enhanced at high temperatures, but scission of the C―N bond is not as favorable. A bimolecular pathway of oxygen-abstraction by NO2 to generate NO3 is observed in the initial decomposition steps of CL-20, which should be considered as one of the major pathways for CL-20 decomposition at low temperatures. After the initiation of CL-20 decomposition, fragments with different ring structures are formed from a series of bond-breaking reactions. Analysis of the ring structure evolution indicates that the pyrazine derivatives of fused tricycles and bicycles are early intermediates in the decomposition process, which further decompose to single ring pyrazine. Pyrazine is the most stable ring structure obtained in the simulations of CL-20 thermolysis, supporting the proposed existence of pyrazine in Py-GC/MS experiments. The single imidazole ring is unstable and decomposes quickly in the early stages of CL-20 thermolysis. Many C4 and C2 intermediates are observed after the initial fragmentation, but eventually convert into stable products. The distribution of the final products (N2, H2O, CO2, and H2) obtained in ReaxFF MD simulation of CL-20 thermolysis at 3000 K quantitatively agrees with the results of the CL-20 detonation experiment. The comprehensive understanding of CL-20 thermolysis obtained through this study suggests that ReaxFF MD simulation, combined with the reaction analysis capability of VARxMD, would be a promising method for obtaining deeper insight into the complex chemistry of energetic materials exposed to thermal stimuli.
  • 加载中
    1. [1]

      Nielsen, A. T.; Chafin, A. P.; Christian, S. L.; Moore, D. W.; Nadler, M. P.; Nissan, R. A.; Vanderah, D. J.; Gilardi, R. D.; George, C. F.; Flippen-Anderson, J. L. Tetrahedron 1998, 54 (39), 11793. doi: 10.1016/S0040-4020(98)83040-8  doi: 10.1016/S0040-4020(98)83040-8

    2. [2]

      (a) Wenograd, J. Trans. Faraday Soc. 1961, 57 (9), 1612. doi: 10.1039/tf9615701612
      (b) Brill, T. B. ; James, K. J. Chem. Rev. 1993, 93 (8), 2667. doi: 10.1021/cr00024a005
      (c) Botcher, T. R. ; Wight, C. A. J. Phys. Chem. 1994, 98 (21), 5441. doi: 10.1021/j100072a009
      (d) Politzer, P. ; Boyd, S. Struct. Chem. 2002, 13 (2), 105. doi: 10.1023/a:1015748330357

    3. [3]

      Patil, D. G. ; Brill, T. B. Combust. Flame 1991, 87 (2), 145. doi: 10.1016/0010-2180(91)90164-7

    4. [4]

      Patil, D. G.; Brill, T. B. Combust. Flame 1993, 92 (4), 456. doi: 10.1016/0010-2180(93)90155-v  doi: 10.1016/0010-2180(93)90155-v

    5. [5]

      (a) Korsounskii, B. L. ; Nedel'ko, V. V. ; Chukanov, N. V. ; Larikova, T. S. ; Volk, F. Russ. Chem. Bull. 2000, 49 (5), 812. doi: 10.1007/bf02494701
      (b) Nedel'ko, V. V. ; Chukanov, N. V. ; Raevskii, A. V. ; Korsounskii, B. L. ; Larikova, T. S. ; Kolesova, O. I. ; Volk, F. Prop. Explos. Pyrotech. 2000, 25 (5), 255. doi: 10.1002/1521-4087(200011)25:5<255::aid-prep255>3.0.co;2-8

    6. [6]

      Naik, N. H.; Gore, G. M.; Gandhe, B. R.; Sikder, A. K. J. Hazard. Mater. 2008, 159 (2–3), 630. doi: 10.1016/j.jhazmat.2008.02.049  doi: 10.1016/j.jhazmat.2008.02.049

    7. [7]

      Okovytyy, S.; Kholod, Y.; Qasim, M.; Fredrickson, H.; Leszczynski, J. J. Phys. Chem. A 2005, 109 (12), 2964. doi: 10.1021/jp045292v  doi: 10.1021/jp045292v

    8. [8]

      Isayev, O.; Gorb, L.; Qasim, M.; Leszczynski, J. J. Phys. Chem. B 2008, 112 (35), 11005. doi: 10.1021/jp804765m  doi: 10.1021/jp804765m

    9. [9]

      Xue, X.; Wen, Y.; Zhang, C. J. Phys. Chem. C 2016, 120 (38), 21169. doi: 10.1021/acs.jpcc.6b05228  doi: 10.1021/acs.jpcc.6b05228

    10. [10]

      (a) Guo, D. Z. ; An, Q. ; Zybin, S. V. ; Goddard, W. A. ; Huang, F. L. ; Tang, B. J. Mater. Chem. A 2015, 3 (10), 5409. doi: 10.1039/c4ta06858k
      (b) Xue, X. ; Ma, Y. ; Zeng, Q. ; Zhang, C. J. Phys. Chem. C 2017, 121 (9), 4899. doi: doi: 10.1021/acs.jpcc.7b00698

    11. [11]

      Yan, Q. -L.; Zeman, S.; Sanchez-Jimenez, P. E.; Zhang, T. -L.; Perez-Maqueda, L. A.; Elbeih, A. J. Phys. Chem. C 2014, 118 (40), 22881. doi: 10.1021/jp505955n  doi: 10.1021/jp505955n

    12. [12]

      Zhang, L. Z.; Zybin, S. V.; van Duin, A. C. T.; Goddard, W. A. J. Energ. Mater. 2010, 28, 92. doi: 10.1080/07370652.2010.504682  doi: 10.1080/07370652.2010.504682

    13. [13]

      (a) Strachan, A. ; van Duin, A. C. T. ; Chakraborty, D. ; Dasgupta, S. ; Goddard, W. A. Phys. Rev. Lett. 2003, 91 (9). doi: 10.1103/PhysRevLett.91.098301
      (b) An, Q. ; Liu, Y. ; Zybin, S. V. ; Kim, H. ; Goddard, W. A. J. Phys. Chem. C 2012, 116 (18), 10198. doi: 10.1021/jp300711m

    14. [14]

      Wood, M. A.; van Duin, A. C. T.; Strachan, A. J. Phys. Chem. A 2014, 118 (5), 885. doi: 10.1021/jp406248m  doi: 10.1021/jp406248m

    15. [15]

      (a) Furman, D. ; Kosloff, R. ; Dubnikova, F. ; Zybin, S. V. ; Goddard, W. A., Ⅲ; Rom, N. ; Hirshberg, B. ; Zeiri, Y. J. Am. Chem. Soc. 2014, 136 (11), 4192. doi: 10.1021/ja410020f
      (b) Strachan, A. ; Kober, E. M. ; van Duin, A. C. T. ; Oxgaard, J. ; Goddard, W. A. J. Chem. Phys. 2005, 122 (5). doi: 10.1063/1.1831277
      (c) Zhou, T. T. ; Liu, L. C. ; Goddard, W. A. ; Zybin, S. V. ; Huang, F. L. Phys. Chem. Chem. Phys. 2014, 16 (43), 23779. doi: 10.1039/c4cp03781b

    16. [16]

      Li, X.; Mo, Z.; Liu, J.; Guo, L. Mol. Simulat. 2015, 41 (1–3), 13. doi: 10.1080/08927022.2014.913789  doi: 10.1080/08927022.2014.913789

    17. [17]

      Foltz, M. F.; Coon, C. L.; Garcia, F.; Nichols, A. L. Prop. Explos. Pyrotech. 1994, 19 (1), 19. doi: 10.1002/prep.19940190105  doi: 10.1002/prep.19940190105

    18. [18]

      (a) Turcotte, R. ; Vachon, M. ; Kwok, Q. S. M. ; Wang, R. ; Jones, D. E. G. Thermochim. Acta 2005, 433 (1–2), 105. doi: 10.1016/j.tca.2005.02.021
      (b) Irikura, K. K. ; Johnson, R. D. J. Phys. Chem. A 2006, 110 (51), 13974. doi: 10.1021/jp065611d

    19. [19]

      (a) Bolton, O. ; Matzger, A. J. Angew. Chem. Int. Ed. 2011, 50 (38), 8960. doi: 10.1002/anie.201104164
      (b) Bolton, O. ; Simke, L. R. ; Pagoria, P. F. ; Matzger, A. J. Cryst. Growth Des. 2012, 12 (9), 4311. doi: 10.1021/cg3010882
      (c) Wang, Y. ; Yang, Z. ; Li, H. ; Zhou, X. ; Zhang, Q. ; Wang, J. ; Liu, Y. Prop. Explos. Pyrotech. 2014, 39 (4), 590. doi: 10.1002/prep.201300146
      (d) Yang, Z. ; Li, H. ; Zhou, X. ; Zhang, C. ; Huang, H. ; Li, J. ; Nie, F. Cryst. Growth Des. 2012, 12 (11), 5155. doi: 10.1021/cg300955q

    20. [20]

      doi: http://accelrys.com/products/materials-studio/ (accessed Mar 13; 2016).

    21. [21]

      Ou, Y. X.; Jia, H. P.; Xu, Y. J.; Chen, B. R.; Fan, G. Y.; Liu, L. H.; Zheng, F. P.; Pan, Z. L.; Wang, C. Sci. China-Chem. 1999, 42 (2), 217. doi: 10.1007/bf02875520  doi: 10.1007/bf02875520

    22. [22]

      Liu, L.; Liu, Y.; Zybin, S. V.; Sun, H.; Goddard, W. A., Ⅲ. J. Phys. Chem. A 2011, 115 (40), 11016. doi: 10.1021/jp201599t  doi: 10.1021/jp201599t

    23. [23]

      Sandia National Laboratories; LAMMPS. doi: http://lammps.sandia.gov/.

    24. [24]

      Liu, J.; Li, X.; Guo, L.; Zheng, M.; Han, J.; Yuan, X.; Nie, F.; Liu, X. J. Mol. Graph. Model. 2014, 53, 13. doi: 10.1016/j.jmgm.2014.07.002  doi: 10.1016/j.jmgm.2014.07.002

    25. [25]

      Zheng, M.; Li, X.; Nie, F.; Guo, L. Energy Fuels 2017, 31 (4), 3675. doi: 10.1021/acs.energyfuels.6b03243  doi: 10.1021/acs.energyfuels.6b03243

    26. [26]

      Liu, X.; Li, X.; Liu, J.; Wang, Z.; Kong, B.; Gong, X.; Yang, X.; Lin, W.; Guo, L. Polym. Degrad. Stab. 2014, 104, 62. doi: 10.1016/j.polymdegradstab.2014.03.022  doi: 10.1016/j.polymdegradstab.2014.03.022

    27. [27]

      (a) Zhang, T. ; Li, X. ; Qiao, X. ; Zheng, M. ; Guo, L. ; Song, W. ; Lin, W. Energy Fuels 2016, 30 (4), 3140. doi: 10.1021/acs.energyfuels.6b00247
      (b) Zhang, T. ; Li, X. ; Guo, L. Langmuir 2017, 33 (42), 11646. doi: 10.1021/acs.langmuir.7b02053

    28. [28]

      Zheng, M.; Wang, Z.; Li, X.; Qiao, X.; Song, W.; Guo, L. Fuel 2016, 177, 130. doi: 10.1016/j.fuel.2016.03.008  doi: 10.1016/j.fuel.2016.03.008

    29. [29]

      Wang, Z. -M.; Zheng, M.; Xie, Y. -B.; Li, X. -X.; Zeng, M.; Cao, H. -B.; Guo, L. Acta Phys. -Chim. Sin. 2017, 33 (7), 1399.  doi: 10.3866/PKU.WHXB201704132

    30. [30]

      Liu, X. -L.; Li, X. -X.; Han, S.; Qiao, X. -J.; Zhong, B. -J.; Guo, L. Acta Phys. -Chim. Sin. 2016, 32 (6), 1424.  doi: 10.3866/PKU.WHXB201603233

    31. [31]

      Liu, X.; Li, X.; Nie, F.; Guo, L. Energy Fuels. 2017, 31 (2), 1608. doi: 10.1021/acs.energyfuels.6b02508  doi: 10.1021/acs.energyfuels.6b02508

    32. [32]

      Han, S.; Li, X.; Nie, F.; Zheng, M.; Liu, X.; Guo, L. Energy Fuels2017, 31 (8), 8434. doi: 10.1021/acs.energyfuels.7b01194  doi: 10.1021/acs.energyfuels.7b01194

    33. [33]

      Simpson, R. L. ; Urtiew, P. A. ; Ornellas, D. L. ; Moody, G. L. ; Scribner, K. F. J. ; Hoffman, D. M. Prop. Explos. Pyrotech. 1997, 22 (5), 249. doi: 10.1002/prep.19970220502

    34. [34]

      Zhou, T.; Song, H.; Liu, Y.; Huang, F. Phys. Chem. Chem. Phys. 2014, 16 (27), 13914. doi: 10.1039/c4cp00890a  doi: 10.1039/c4cp00890a

    35. [35]

      Budzien, J.; Thompson, A. P.; Zybin, S. V. J. Phys. Chem. B 2009, 113 (40), 13142. doi: 10.1021/jp9016695  doi: 10.1021/jp9016695

    36. [36]

      (a) Zhou, T. T. ; Lou, J. F. ; Song, H. J. ; Huang, F. L. Phys. Chem. Chem. Phys. 2015, 17 (12), 7924. doi: 10.1039/c4cp05575f
      (b) Zhou, T. T. ; Zhang, Y. G. ; Lou, J. F. ; Song, H. J. ; Huang, F. L. RSC Adv. 2015, 5 (12), 8609. doi: 10.1039/c4ra09943e

    37. [37]

      Yinon, J.; Yost, R. A.; Bulusu, S. J. Chromatogr. A 1994, 688 (1–2), 231. doi: 10.1016/0021-9673(94)00827-2  doi: 10.1016/0021-9673(94)00827-2

    38. [38]

      Behrens, R.; Bulusu, S. J. Phys. Chem. 1992, 96 (22), 8891. doi: 10.1021/j100201a037  doi: 10.1021/j100201a037

    39. [39]

      (a) Behrens, R. ; Bulusu, S. J. Phys. Chem. 1992, 96 (22), 8877. doi: 10.1021/j100201a036
      (b) Chakraborty, D. ; Muller, R. P. ; Dasgupta, S. ; Goddard, W. A. J. Phys. Chem. A 2001, 105 (8), 1302. doi: 10.1021/jp0026181
      (c) Peng, L. -J. ; Yao, Q. ; Wang, J. -B. ; Li, Z. -R. ; Zhu, Q. ; Li, X. -Y. Acta Phys. -Chim. Sin. 2017, 33 (4), 745.

  • 加载中
    1. [1]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    2. [2]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    3. [3]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    7. [7]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    8. [8]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    9. [9]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    10. [10]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    11. [11]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    12. [12]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    16. [16]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    17. [17]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    18. [18]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    19. [19]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    20. [20]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

Metrics
  • PDF Downloads(8)
  • Abstract views(420)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return