Citation: LU Teng, ZHOU Yongxiang, GUO Hongxia. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1144-1150. doi: 10.3866/PKU.WHXB201802122 shu

Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study

  • Corresponding author: GUO Hongxia, hxguo@iccas.ac.cn
  • Received Date: 3 January 2018
    Revised Date: 30 January 2018
    Accepted Date: 5 February 2018
    Available Online: 12 October 2018

    Fund Project: National Basic Research Program of China (973) 2014CB643601The project was supported by the National Nature Science Foundation of China (21174154, 21204094, 50930002, 20874110, 20674093) and National Basic Research Program of China (973) (2014CB643601)the National Nature Science Foundation of China 21174154the National Nature Science Foundation of China 50930002the National Nature Science Foundation of China 21204094the National Nature Science Foundation of China 20674093the National Nature Science Foundation of China 20874110

  • Because of broad potential applications in sensing, drug delivery, and molecular motors, two-dimensional (2D), flexible, responsive Janus materials have attracted considerable interest recently in many fields. Unfortunately, the molecular-level responsive deformation of these 2D Janus nanomaterials is still not clearly understood. Hence, investigating the influence factor and responsiveness of the deformation of the 2D flexible responsive Janus nanomaterials should be helpful to deepen our understanding of the deformation mechanism and may provide valuable information in the design and synthesis of novel functional 2D Janus nanomaterials. Therefore, a mesoscopic simulation method, dissipative particle dynamics simulation, based on coarse-grained models, is employed in this work to systematically investigate the effect of the chain length difference between grafted polymers within two compartments of each individual Janus nanosheet and the effect of solvent selectivity difference of these two compartments on the deformation of the polymer-grafted Janus nanosheet. Although the coarse-grained model within this simulation is relatively crude, it is still valid to provide a qualitative image of the deformation of the polymer-grafted Janus nanosheet. Furthermore, we find two basic principles: (1) with increasing length difference between grafted polymers on the two opposite surfaces, the nanosheet will bear an entropy-driven deformation with increasing curvature; (2) the solvent will preferentially wet the polymer layer with better compatibility, and such a swelling effect may also provide a driving force for the deformation process. Owing to the interplay of conformational entropy and mixing enthalpy, the equilibrium structures of the polymer-grafted Janus nanosheet result in several interesting structures, such as a tube-like structure with a hydrophobic outer surface, an envelope-like structure, and a bowl-like structure, with tuning of the chain length and solvent compatibility of grafted polymers. Additionally, an unusually tube-like structure with a hydrophobic outer surface has been observed for a relatively weak solvent selectivity, which may provide us a novel method to transfer materials into the incompatible environment and therefore has potential applications in many areas, such as controllable drug delivery and release, and industrial and medical detection. Our theoretical results first provide a fundamental insight into the controllable deformation of the flexible Janus nanosheet, which can then help in the design and synthesis of novel Janus nanodevices for potential applications in pharmaceuticals and biomedicine. Bearing the limited of the computational capabilities, our model Janus nanosheets are relatively small, which are not direct mappings from real system. We hope that a systematic simulation study on this topic would be possible soon with the rapid developments in computer technology and simulation methods, and this would provide an exhaustive and universal methodology to guide experimental studies and applications.
  • 加载中
    1. [1]

      de Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645. doi: 10.1103/RevModPhys.64.645  doi: 10.1103/RevModPhys.64.645

    2. [2]

      Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S. Nano Lett. 2006, 6, 2510. doi: 10.1021/nl061857i  doi: 10.1021/nl061857i

    3. [3]

      Takei, H.; Shimizu, N. Langmuir 1997, 13, 1865. doi: 10.1021/la9621067  doi: 10.1021/la9621067

    4. [4]

      Glotzer, S. C. Science 2004, 306, 419. doi: 10.1126/science.1099988  doi: 10.1126/science.1099988

    5. [5]

      Roh, K. H.; Martin, D. C.; Lahann, J. Nat. Mater. 2005, 4, 759. doi: 10.1038/nmat1486  doi: 10.1038/nmat1486

    6. [6]

      Dendukuri, D.; Pregibon, D. C.; Collins, J.; Hatton, T. A.; Doyle, P. S. Nat. Mater. 2006, 5, 365. doi: 10.1038/nmat1617  doi: 10.1038/nmat1617

    7. [7]

      Xu, G.; Huang, Z.; Chen, P.; Cui, T.; Zhang, X.; Miao, B.; Yan, L. -T. Small 2017, 13, 1603155. doi: 10.1002/smll.201603155  doi: 10.1002/smll.201603155

    8. [8]

      Ruhland, T. M.; Groschel, A. H.; Walther, A.; Muller, A. H. E. Langmuir 2011, 27, 9807. doi: 10.1021/la201863x  doi: 10.1021/la201863x

    9. [9]

      Huang, M.; Li, Z.; Guo, H. Soft Matter 2012, 8, 6834. doi: 10.1039/C2SM25086A  doi: 10.1039/C2SM25086A

    10. [10]

      Binks, B. P.; Fletcher, P. D. I. Langmuir 2001, 17, 4708. doi: 10.1021/la0103315  doi: 10.1021/la0103315

    11. [11]

      Glaser, N.; Adams, D. J.; Boker, A.; Krausch G. Langmuir 2006, 22, 5227. doi: 10.1021/la060693i  doi: 10.1021/la060693i

    12. [12]

      Yan, L. -T.; Popp, N.; Ghosh, S. -K.; Böker, A. ACS Nano 2010, 4, 913. doi: 10.1021/nn901739v  doi: 10.1021/nn901739v

    13. [13]

      Chen, P.; Yang, Y.; Dong, B.; Huang, Z.; Zhu, G.; Cao, Y.; Yan, L. -T. Macromolecules 2017, 50, 2078. doi: 10.1021/acs.macromol.7b00012  doi: 10.1021/acs.macromol.7b00012

    14. [14]

      Liang, F.; Shen, K.; Qu, X.; Zhang, C.; Wang, Q.; Li, J.; Liu, J.; Yang, Z. Angew. Chem. Int. Ed. 2011, 50, 2379. doi: 10.1002/anie.201007519  doi: 10.1002/anie.201007519

    15. [15]

      Chen, Y. Macromolecules 2012, 45, 2619. doi: 10.1021/ma201495m  doi: 10.1021/ma201495m

    16. [16]

      Xu, X.; Liu, Y.; Gao, Y.; Li, H. Colloid Surface A 2017, 529, 613. doi: 10.1016/j.colsurfa.2017.06.048  doi: 10.1016/j.colsurfa.2017.06.048

    17. [17]

      Nonomura, Y.; Komura, S.; Tsujii, K. Langmuir 2004, 20, 11821. doi: 10.1021/la0480540.  doi: 10.1021/la0480540

    18. [18]

      Nonomura, Y.; Komura, S.; Tsujii, K. J. Phys. Chem. B 2006, 110, 13124. doi: 10.1021/jp0617017  doi: 10.1021/jp0617017

    19. [19]

      Huang, M.; Guo, H. Soft Matter 2013, 9, 7356. doi: 10.1039/C3SM50957E  doi: 10.1039/C3SM50957E

    20. [20]

      Ji, Q.; Yuan, B.; Lu, X.; Yang, K.; Ma, Y. Small 2016, 12, 1140. doi: 10.1002/smll.201501885  doi: 10.1002/smll.201501885

    21. [21]

      Deng, R.; Liang, F.; Zhu, J.; Yang, Z. Mater. Chem. Front. 2017, 1, 431. doi: 10.1039/C6QM00116E  doi: 10.1039/C6QM00116E

    22. [22]

      Xiang, W.; Zhao, S.; Song, X.; Fang, S.; Wang, F.; Zhong, C.; Luo, Z. Phys. Chem. Chem. Phys. 2017, 19, 7576. doi: 10.1039/C6CP08654C  doi: 10.1039/C6CP08654C

    23. [23]

      Walther, A.; Andre, X.; Drechsler, M.; Abetz, V.; Muller, A. H. E. J. Am. Chem. Soc. 2007, 129, 6187. doi: 10.1021/ja068153v  doi: 10.1021/ja068153v

    24. [24]

      Walther, A.; Hoffmannc, M.; Muller, A. H. E. Angew. Chem. 2007, 119, 737.  doi: 10.1002/(ISSN)1521-3757

    25. [25]

      Walther, A.; Matussek, K.; Muller, A. H. E. ACS Nano 2008, 2, 1167. doi: 10.1021/nn800108y  doi: 10.1021/nn800108y

    26. [26]

      Walther, A.; Drechsler, M.; Muller, A. H. E. Soft Matter 2009, 5, 385. doi: 10.1039/B812321G  doi: 10.1039/B812321G

    27. [27]

      Liang, F. X.; Shen, K.; Qu, X. Z.; Zhang, C. L.; Wang, Q.; Li, J. L.; Liu, J. G.; Yang, Z. Z. Angew. Chem. Int. Ed. 2011, 50, 2379. doi: 10.1002/anie.201007519  doi: 10.1002/anie.201007519

    28. [28]

      Yang, H. L.; Liang, F. X.; Wang, X.; Chen, Y.; Zhang, C. L.; Wang, Q.; Qu, X. Z.; Li, J. L.; Wu, D. C.; Yang, Z. Z. Macromolecules 2013, 46, 2754. doi: 10.1021/ma400261y  doi: 10.1021/ma400261y

    29. [29]

      Han, D.; Xiao, P.; Gu, J.; Chen, J.; Cai, Z.; Zhang, J., Wang, W.; Chen, T. RSC Adv. 2014, 4, 22759. doi: 10.1039/C4RA02826K  doi: 10.1039/C4RA02826K

    30. [30]

      Zhao, Z. G.; Liang, F. X.; Zhang, G. L.; Ji, X. Y.; Wang, Q.; Qu, X. Z.; Song, X. M.; Yang, Z. Z. Macromolecules 2015, 48, 3598. doi: 10.1021/acs.macromol.5b00365  doi: 10.1021/acs.macromol.5b00365

    31. [31]

      Liu, Y.; Liang, F.; Wang, Q.; Qu, X.; Yang, Z. Chem. Commun. 2015, 51, 3562. doi: 10.1039/C4CC08420A  doi: 10.1039/C4CC08420A

    32. [32]

      Qi, H.; Zhou, T.; Mei, S.; Chen, X.; Li, C. Y. ACS Macro Lett. 2016, 5, 651. doi: 10.1021/acsmacrolett.6b00251  doi: 10.1021/acsmacrolett.6b00251

    33. [33]

      Liu, Y.; Xu, X.; Liang, F.; Yang, Z. Macromolecules 2017, 50, 9042. doi: 10.1021/acs.macromol.7b01558  doi: 10.1021/acs.macromol.7b01558

    34. [34]

      Yan, L. -T.; Maresov, E.; Buxton, G. A.; Balazs, A. C. Soft Matter 2011, 7, 595. doi: 10.1039/C0SM00803F  doi: 10.1039/C0SM00803F

    35. [35]

      Chen, P.; Huang, Z.; Liang, J.; Cui, T.; Zhang, X.; Miao, B.; Yan, L. -T. ACS Nano 2016, 10, 11541. doi: 10.1021/acsnano.6b07563  doi: 10.1021/acsnano.6b07563

    36. [36]

      He, L.; Pan, Z.; Zhang, L.; Liang, H. Soft Matter 2011, 7, 1147. doi: 10.1039/C0SM00703J  doi: 10.1039/C0SM00703J

    37. [37]

      Zhou, Y. ; Huang, M. ; Lu, T. ; Guo, H. Macromolecules submitted.

    38. [38]

      Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19, 155. doi: 10.1209/0295-5075/19/3/001  doi: 10.1209/0295-5075/19/3/001

    39. [39]

      Espanol, P.; Warren, P. Europhys. Lett. 1995, 30, 191. doi: 10.1209/0295-5075/30/4/001  doi: 10.1209/0295-5075/30/4/001

    40. [40]

      Espanol, P. Europhys. Lett. 1997, 40, 631. doi: 10.1209/epl/i1997-00515-8  doi: 10.1209/epl/i1997-00515-8

    41. [41]

      Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423. doi: 10.1063/1.474784  doi: 10.1063/1.474784

    42. [42]

      Jin, Y.; Xue, Q.; Lei, Z.; Li, X.; Pan, X.; Zhang, J.; Xing, W.; Wu, T. Sci. Rep. 2016, 6, 26914. doi: 10.1038/srep26914  doi: 10.1038/srep26914

  • 加载中
    1. [1]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    2. [2]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    3. [3]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    4. [4]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    5. [5]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    6. [6]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    7. [7]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    8. [8]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    9. [9]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    10. [10]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    11. [11]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    12. [12]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    13. [13]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    14. [14]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    15. [15]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    16. [16]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    17. [17]

      Xingjie LiChengjun YiWeifei HuHuishan ZhangJiale XiaYuanyuan LiJinping Liu . Emerging sulfide-polymer composite solid electrolyte membranes. Chinese Chemical Letters, 2025, 36(6): 110215-. doi: 10.1016/j.cclet.2024.110215

    18. [18]

      Lei ZhangChenyang KouKun NiYiwen ChenTongchuan ZhangBaoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836

    19. [19]

      Xiaonan LIHui HANYihan ZHANGJing XIONGTingting GUOJuanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376

    20. [20]

      Jiabin ZhangXiaoke ZhangLilei WangLingpeng YanXueli ChengTao Li . Fluorinated fused azobenzene boron-based polymer acceptors with 1000 nm absorbance edges for all-polymer solar cells. Chinese Chemical Letters, 2025, 36(7): 111064-. doi: 10.1016/j.cclet.2025.111064

Metrics
  • PDF Downloads(13)
  • Abstract views(632)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return