Citation: WANG Xinyi, XIE Lei, DING Yuanqi, YAO Xinyi, ZHANG Chi, KONG Huihui, WANG Likun, XU Wei. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1321-1333. doi: 10.3866/PKU.WHXB201802081 shu

Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions

  • Corresponding author: XU Wei, xuwei@tongji.edu.cn
  • Received Date: 9 January 2018
    Revised Date: 1 February 2018
    Accepted Date: 6 February 2018
    Available Online: 8 December 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21473123, 21622307)the National Natural Science Foundation of China 21473123the National Natural Science Foundation of China 21622307

  • Nucleobases (guanine (G), adenine (A), thymine (T), cytosine (C), and uracil (U)) are important constituents of nucleic acids, which carry genetic information in all living organisms, and play vital roles in structure formation, functionalization, and biological catalytic processes. The principle of complementary base pairing is significant in the high-fidelity replication of DNA and RNA. In addition to their specific recognition, the interaction between bases and other reactants, such as metals, salts, and certain small molecules, may cause distinct effects. Specifically, the interactions between bases and certain metal atoms or ions could damage nucleic acids, inducing gene mutation and even carcinogenesis. In the meantime, nanoscale devices based on metal-DNA interactions have become the focus of research in nanotechnology. Therefore, extensive researches on the interactions between metals and bases and the corresponding mechanism are of great importance and may make improvements in the fields of both biochemistry and nanotechnology. Scanning tunneling microscopy (STM) is a powerful tool for effectively resolving nanostructures in real space and on the atomic scale under ultrahigh vacuum (UHV) conditions. Moreover, density functional theory (DFT) calculations could help elucidate the reaction pathways and their mechanisms. In this review, we summarize the distinct interactions between bases (including their derivatives) and various metal species (comprising alkali, alkaline earth, and transition metals) derived from metal sources and the corresponding salts on the Au(111) substrate reported recently based on the results obtained by a combination of above two methods. In general, bases afford N and/or O binding sites to interact with metal atoms, resulting in various motifs via coordination or electrostatic interactions, and form intermolecular hydrogen bonds to stabilize the whole system. On the basis of high-resolution STM images and DFT calculations, structural models and the possible reaction pathways are proposed, and their underlying mechanisms, which reveal the nature of the interactions, are thus obtained. Among them, we summarize the construction of G-quartet structures with different kinds of central metals like Na, K, and Ca, which are directly introduced by salts, and their relative stabilities are compared. In addition, salts can provide not only metal cations but also halogen anions in modulating the structure formation with bases. The halogen species enable the regulation of metal-organic motifs and induce phase transition by locating at specific hydrogen-rich sites. Moreover, reversible structural transformations of metal-organic nanostructures are realized owing to the intrinsic dynamic characteristic of coordination bonds, together with the coordination priority and diversity. Furthermore, the controllable scission and seamless stitching of metal-organic clusters, which contain two types of hierarchical interactions, have been successfully achieved through STM manipulations. Finally, this review offers a thorough comprehension on the interaction between bases and metals on Au(111) and provide fundamental insights into controllable fabrication of nanostructures of DNA bases. We also admit the limitation involved in detecting biological processes by on-surface model system, and speculate on future studies that would use more complicated biomolecules together with other technologies.
  • 加载中
    1. [1]

      Snoussi, K.; Halle, B. Biochemistry 2008, 47 (46), 12219. doi: 10.1021/bi801657s  doi: 10.1021/bi801657s

    2. [2]

      Luedtke, N. W. Chim. Int. J. Chem. 2009, 63 (3), 134. doi: 10.2533/chimia.2009.134  doi: 10.2533/chimia.2009.134

    3. [3]

      Bochman, M. L.; Paeschke, K.; Zakian, V. A. Nat. Rev. Genet. 2012, 13 (11), 770. doi: 10.1038/nrg3296  doi: 10.1038/nrg3296

    4. [4]

      Koirala, D.; Dhakal, S.; Ashbridge, B.; Sannohe, Y.; Rodriguez, R.; Sugiyama, H.; Balasubramanian, S.; Mao, H. Nat. Chem. 2011, 3 (10), 782. doi: 10.1038/nchem.1126  doi: 10.1038/nchem.1126

    5. [5]

      Nicoludis, J. M.; Miller, S. T.; Jeffrey, P. D.; Barrett, S. P.; Rablen, P. R.; Lawton, T. J.; Yatsunyk, L. A. J. Am. Chem. Soc. 2012, 134 (50), 20446. doi: 10.1021/ja3088746  doi: 10.1021/ja3088746

    6. [6]

      Nicoludis, J. M.; Barrett, S. P.; Mergny, J. L.; Yatsunyk, L. A. Nucleic Acids Res. 2012, 40 (12), 5432. doi: 10.1093/nar/gks152  doi: 10.1093/nar/gks152

    7. [7]

      Davis, J. T. Angew. Chem. Int. Ed. 2004, 43 (6), 668. doi: 10.1002/anie.200300589  doi: 10.1002/anie.200300589

    8. [8]

      Lippert, B.; Gupta, D. Dalton Trans. 2009, No. 24, 4619. doi: 10.1039/B823087K  doi: 10.1039/B823087K

    9. [9]

      Gupta, D.; Huelsekopf, M.; Cerdà, M. M.; Ludwig, R.; Lippert, B. Inorg. Chem. 2004, 43 (11), 3386. doi: 10.1021/ic0353965  doi: 10.1021/ic0353965

    10. [10]

      Katritzky, A. R.; Karelson, M. J. Am. Chem. Soc. 1991, 113 (5), 1561. doi: 10.1021/ja00005a017  doi: 10.1021/ja00005a017

    11. [11]

      Goodman, M. F. Nature 1995, 378 (6554), 237. doi: 10.1038/378237a0  doi: 10.1038/378237a0

    12. [12]

      Wang, W.; Hellinga, H. W.; Beese, L. S. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (43), 17644. doi: 10.1073/pnas.1114496108  doi: 10.1073/pnas.1114496108

    13. [13]

      Zamora, F.; Kunsman, M.; Sabat, M.; Lippert, B. Inorg. Chem. 1997, 36 (8), 1583. doi: 10.1021/ic961167p  doi: 10.1021/ic961167p

    14. [14]

      Martínez, A. J. Chem. Phys. 2005, 123 (2), 024311. doi: 10.1063/1.1935507  doi: 10.1063/1.1935507

    15. [15]

      Zhao, Y. P.; Ai, H. Q.; Chen, J. P.; Yang, A. B.; Qi, Z. N. Acta Phys. -Chim Sin. 2010, 26 (12), 3322.  doi: 10.3866/PKU.WHXB20101215

    16. [16]

      Kabelac, M.; Hobza, P. J. Phys. Chem. B 2006, 110 (29), 14515. doi: 10.1021/jp062249u  doi: 10.1021/jp062249u

    17. [17]

      Russo, N.; Toscano, M.; Grand, A. J. Am. Chem. Soc. 2001, 123 (42), 10272. doi: 10.1021/ja010660j  doi: 10.1021/ja010660j

    18. [18]

      Ciesielski, A.; Lena, S.; Masiero, S.; Spada, G. P.; Samorì, P. Angew. Chem. Int. Ed. 2010, 49 (11), 1963. doi: 10.1002/anie.200905827  doi: 10.1002/anie.200905827

    19. [19]

      Furukawa, M.; Tanaka, H.; Kawai, T. Surf. Sci. 1997, 392 (1–3), L33. doi: 10.1016/S0039-6028(97)00698-5  doi: 10.1016/S0039-6028(97)00698-5

    20. [20]

      Furukawa, M.; Tanaka, H.; Kawai, T. Surf. Sci. 2000, 445 (1), 1. doi: 10.1016/S0039-6028(99)01007-9  doi: 10.1016/S0039-6028(99)01007-9

    21. [21]

      Tanaka, H.; Yoshinobu, J.; Kawai, M.; Kawai, T. Jpn. J. Appl. Phys. 1996, 35 (2B), L244. doi: 10.1143/JJAP.35.L244  doi: 10.1143/JJAP.35.L244

    22. [22]

      Kawai, T. J. Korean Phys. Soc. 1997, 31, S44.
       

    23. [23]

      Tanaka, H.; Kawai, T. Jpn. J. Appl. Phys. 1996, 35 (6B), 3759. doi: 10.1143/JJAP.35.3759  doi: 10.1143/JJAP.35.3759

    24. [24]

      Tanaka, H.; Nakagawa, T.; Kawai, T. Surf. Sci. 1996, 364 (2), L575. doi: 10.1016/0039-6028(96)00792-3  doi: 10.1016/0039-6028(96)00792-3

    25. [25]

      Otero, R.; Lukas, M.; Kelly, R. E. A.; Xu, W.; Laegsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Science 2008, 319 (5861), 312. doi: 10.1126/science.1150532  doi: 10.1126/science.1150532

    26. [26]

      Tan, Q.; Zhang, C.; Wang, N.; Zhu, X.; Sun, Q.; Jacobsen, M. F.; Gothelf, K. V.; Besenbacher, F.; Hu, A.; Xu, W. Chem. Commun. 2014, 50 (3), 356. doi: 10.1039/c3cc46149a  doi: 10.1039/c3cc46149a

    27. [27]

      Otero, R.; Xu, W.; Lukas, M.; Kelly, R. E. A.; Laegsgaard, E.; Stensgaard, I.; Kjems, J.; Kantorovich, L. N.; Besenbacher, F. Angew. Chem. Int. Ed. 2008, 47 (50), 9673. doi: 10.1002/anie.200803333  doi: 10.1002/anie.200803333

    28. [28]

      Xu, W.; Wang, J. G.; Jacobsen, M. F.; Mura, M.; Yu, M.; Kelly, R. E. A.; Meng, Q. Q.; Laegsgaard, E.; Stensgaard, I.; Linderoth, T. R.; et al. Angew. Chem. Int. Ed. 2010, 49 (49), 9373. doi: 10.1002/anie.201003390  doi: 10.1002/anie.201003390

    29. [29]

      Wang, L.; Shi, H. X.; Wang, W. Y.; Shi, H.; Shao, X. Acta Phys. -Chim. Sin. 2017, 33 (2), 393.  doi: 10.3866/PKU.WHXB201611033

    30. [30]

      Chen, A. X.; Wang, H.; Duan, S.; Zhang, H. M.; Xu, X.; Chi, L. F. Acta Phys. -Chim. Sin. 2017, 33 (5), 1010.  doi: 10.3866/PKU.WHXB201702102

    31. [31]

      Zhang, C.; Xie, L.; Ding, Y.; Sun, Q.; Xu, W. ACS Nano 2016, 10 (3), 3776. doi: 10.1021/acsnano.6b00393  doi: 10.1021/acsnano.6b00393

    32. [32]

      Zhang, C.; Xie, L.; Ding, Y.; Xu, W. Chem. Commun. 2018, 54, 771. doi: 10.1039/c7cc09086b  doi: 10.1039/c7cc09086b

    33. [33]

      Xie, L.; Zhang, C.; Ding, Y.; Xu, W. Angew. Chem. Int. Ed. 2017, 56 (18), 5077. doi: 10.1002/anie.201702589  doi: 10.1002/anie.201702589

    34. [34]

      Zhang, Y.; Ding, Y.; Xie, L.; Ma, H.; Yao, X.; Zhang, C.; Yuan, C.; Xu, W. Chem. Phys. 2017, 18 (24), 3544. doi: 10.1002/cphc.201701009  doi: 10.1002/cphc.201701009

    35. [35]

      Ida, R.; Wu, G. J. Am. Chem. Soc. 2008, 130 (11), 3590. doi: 10.1021/ja709975z  doi: 10.1021/ja709975z

    36. [36]

      Kwan, I. C. M.; Wong, A.; She, Y. M.; Smith, M. E.; Wu, G. Chem. Commun. 2008, No. 6, 682. doi: 10.1039/b714803h  doi: 10.1039/b714803h

    37. [37]

      Kwan, I. C. M.; Mo, X.; Wu, G. J. Am. Chem. Soc. 2007, 129 (8), 2398. doi: 10.1021/ja067991m  doi: 10.1021/ja067991m

    38. [38]

      Kwan, I. C. M.; She, Y. M.; Wu, G. Chem. Commun. 2007, No. 41, 4286. doi: 10.1039/b710299b  doi: 10.1039/b710299b

    39. [39]

      Hurley, L. H. Nat. Rev. Cancer 2002, 2 (3), 188. doi: 10.1038/nrc749  doi: 10.1038/nrc749

    40. [40]

      Neidle, S.; Parkinson, G. Nat. Rev. Drug Discov. 2002, 1 (5), 383. doi: 10.1038/nrd793  doi: 10.1038/nrd793

    41. [41]

      González-Rodríguez, D.; Janssen, P. G. A.; Martín-Rapún, R.; De Cat, I.; De Feyter, S.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2010, 132 (13), 4710. doi: 10.1021/ja908537k  doi: 10.1021/ja908537k

    42. [42]

      Xu, W.; Wang, J.; Yu, M.; Lægsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Hammer, B.; Wang, C.; Besenbacher, F. J. Am. Chem. Soc. 2010, 132 (45), 15927. doi: 10.1021/ja1078909  doi: 10.1021/ja1078909

    43. [43]

      Xu, W.; Tan, Q.; Yu, M.; Sun, Q.; Kong, H.; Laegsgaard, E.; Stensgaard, I.; Kjems, J.; Wang, J. G.; Wang, C.; et al. Chem. Commun. 2013, 49 (65), 7210. doi: 10.1039/c3cc43302a  doi: 10.1039/c3cc43302a

    44. [44]

      Zhang, C.; Wang, L.; Xie, L.; Kong, H.; Tan, Q.; Cai, L.; Sun, Q.; Xu, W. ChemPhysChem 2015, 16 (10), 2099. doi: 10.1002/cphc.201500301  doi: 10.1002/cphc.201500301

    45. [45]

      Kong, H.; Sun, Q.; Wang, L.; Tan, Q.; Zhang, C.; Sheng, K.; Xu, W. ACS Nano 2014, 8 (2), 1804. doi: 10.1021/nn4061918  doi: 10.1021/nn4061918

    46. [46]

      Wang, L.; Kong, H.; Zhang, C.; Sun, Q.; Cai, L.; Tan, Q.; Besenbacher, F.; Xu, W. ACS Nano 2014, 8 (11), 11799. doi: 10.1021/nn5054156  doi: 10.1021/nn5054156

    47. [47]

      Langer, H.; Doltsinis, N. L. J. Chem. Phys. 2003, 118 (12), 5400. doi: 10.1063/1.1555121  doi: 10.1063/1.1555121

    48. [48]

      Lopes, R. P.; Marques, M. P. M.; Valero, R.; Tomkinson, J.; de Carvalho, L. A. E. B. Spectroscopy 2012, 27 (5–6), 273. doi: 10.1155/2012/168286  doi: 10.1155/2012/168286

    49. [49]

      Wäckerlin, C.; Iacovita, C.; Chylarecka, D.; Fesser, P.; Jung, T. A.; Ballav, N. Chem. Commun. 2011, 47 (32), 9146. doi: 10.1039/c1cc12519b  doi: 10.1039/c1cc12519b

    50. [50]

      Skomski, D.; Abb, S.; Tait, S. L. J. Am. Chem. Soc. 2012, 134 (34), 14165. doi: 10.1021/ja3053128  doi: 10.1021/ja3053128

    51. [51]

      Skomski, D.; Tait, S. L. J. Phys. Chem. C 2013, 117 (6), 2959. doi: 10.1021/jp400213a  doi: 10.1021/jp400213a

    52. [52]

      Shimizu, T. K.; Jung, J.; Imada, H.; Kim, Y. Angew. Chem. Int. Ed. 2014, 53 (50), 13729. doi: 10.1002/anie.201407555  doi: 10.1002/anie.201407555

    53. [53]

      Zhang, C.; Xie, L.; Wang, L.; Kong, H.; Tan, Q.; Xu, W. J. Am. Chem. Soc. 2015, 137 (36), 11795. doi: 10.1021/jacs.5b07314  doi: 10.1021/jacs.5b07314

    54. [54]

      Xie, L.; Zhang, C.; Ding, Y.; E, W.; Yuan, C.; Xu, W. Chem. Commun. 2017, 53 (62), 8767. doi: 10.1039/c7cc04446a  doi: 10.1039/c7cc04446a

    55. [55]

      Xu, W.; Kelly, R. E. A.; Gersen, H.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Small 2009, 5 (17), 1952. doi: 10.1002/smll.200900315  doi: 10.1002/smll.200900315

    56. [56]

      Liu, J.; Lin, T.; Shi, Z.; Xia, F.; Dong, L.; Liu, P. N.; Lin, N. J. Am. Chem. Soc. 2011, 133 (46), 18760. doi: 10.1021/ja2056193  doi: 10.1021/ja2056193

    57. [57]

      Xu, W.; Kelly, R. E. A.; Otero, R.; Schöck, M.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Small 2007, 3 (12), 2011. doi: 10.1002/smll.200700625  doi: 10.1002/smll.200700625

    58. [58]

      Schlickum, U.; Klappenberger, F.; Decker, R.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Kern, K.; Brune, H.; Barth, J. V. J. Phys. Chem. C 2010, 114 (37), 15602. doi: 10.1021/jp104518h  doi: 10.1021/jp104518h

    59. [59]

      Abdurakhmanova, N.; Floris, A.; Tseng, T. C.; Comisso, A.; Stepanow, S.; De Vita, A.; Kern, K. Nat. Commun. 2012, 3, 940. doi: 10.1038/ncomms1942  doi: 10.1038/ncomms1942

    60. [60]

      Shi, Z.; Liu, J.; Lin, T.; Xia, F.; Liu, P. N.; Lin, N. J. Am. Chem. Soc. 2011, 133 (16), 6150. doi: 10.1021/ja2010434  doi: 10.1021/ja2010434

    61. [61]

      Yu, M.; Xu, W.; Kalashnyk, N.; Benjalal, Y.; Nagarajan, S.; Masini, F.; Lægsgaard, E.; Hliwa, M.; Bouju, X.; Gourdon, A.; et al. Nano Res. 2012, 5 (12), 903. doi: 10.1007/s12274-012-0274-6  doi: 10.1007/s12274-012-0274-6

    62. [62]

      Kong, H.; Wang, L.; Tan, Q.; Zhang, C.; Sun, Q.; Xu, W. Chem. Commun. 2014, 50 (24), 3242. doi: 10.1039/c3cc49241a  doi: 10.1039/c3cc49241a

    63. [63]

      Padermshoke, A.; Katsumoto, Y.; Masaki, R.; Aida, M. Chem. Phys. Lett. 2008, 457 (1), 232. doi: 10.1016/j.cplett.2008.04.029  doi: 10.1016/j.cplett.2008.04.029

    64. [64]

      Auwärter, W.; Seufert, K.; Bischoff, F.; Ecija, D.; Vijayaraghavan, S.; Joshi, S.; Klappenberger, F.; Samudrala, N.; Barth, J. V. Nat. Nanotechnol. 2012, 7 (1), 41. doi: 10.1038/NNANO.2011.211  doi: 10.1038/NNANO.2011.211

    65. [65]

      Pan, S.; Fu, Q.; Huang, T.; Zhao, A.; Wang, B.; Luo, Y.; Yang, J.; Hou, J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (36), 15259. doi: 10.1073/pnas.0903131106  doi: 10.1073/pnas.0903131106

    66. [66]

      Kumagai, T.; Hanke, F.; Gawinkowski, S.; Sharp, J.; Kotsis, K.; Waluk, J.; Persson, M.; Grill, L. Nat. Chem. 2014, 6 (1), 41. doi: 10.1038/nchem.1804  doi: 10.1038/nchem.1804

    67. [67]

      Kong, H.; Wang, L.; Sun, Q.; Zhang, C.; Tan, Q.; Xu, W. Angew. Chem. Int. Ed. 2015, 54 (22), 6526. doi: 10.1002/anie.201501701  doi: 10.1002/anie.201501701

    68. [68]

      Kong, H.; Zhang, C.; Xie, L.; Wang, L.; Xu, W. Angew. Chem. Int. Ed. 2016, 55 (25), 7157. doi: 10.1002/anie.201602572  doi: 10.1002/anie.201602572

    69. [69]

      Zhang, C.; Sun, Q.; Chen, H.; Tan, Q.; Xu, W. Chem. Commun. 2015, 51 (3), 495. doi: 10.1039/c4cc07953a  doi: 10.1039/c4cc07953a

    70. [70]

      Fan, Q.; Gottfried, J. M.; Zhu, J. Acc. Chem. Res. 2015, 48 (8), 2484. doi: 10.1021/acs.accounts.5b00168  doi: 10.1021/acs.accounts.5b00168

    71. [71]

      Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. ACS Nano 2016, 10 (7), 7023. doi: 10.1021/acsnano.6b03048  doi: 10.1021/acsnano.6b03048

    72. [72]

      Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. Chem. Commun. 2016, 52 (35), 6009. doi: 10.1039/c6cc01059h  doi: 10.1039/c6cc01059h

    73. [73]

      Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M. J.; et al. Am. Chem. Soc. 2010, 132 (46), 16669. doi: 10.1021/ja107947z  doi: 10.1021/ja107947z

    74. [74]

      Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. Nat. Chem. 2012, 4 (3), 215. doi: 10.1038/NCHEM.1242  doi: 10.1038/NCHEM.1242

    75. [75]

      Kaposi, T.; Joshi, S.; Hoh, T.; Wiengarten, A.; Seufert, K.; Paszkiewicz, M.; Klappenberger, F.; Ecija, D.; Đorđević, L.; Marangoni, T. ACS Nano 2016, 10 (8), 7665. doi: 10.1021/acsnano.6b02989  doi: 10.1021/acsnano.6b02989

    76. [76]

      Rastgoo-Lahrood, A.; Björk, J.; Lischka, M.; Eichhorn, J.; Kloft, S.; Fritton, M.; Strunskus, T.; Samanta, D.; Schmittel, M.; Heckl, W. M.; et al. Angew. Chem. Int. Ed. 2016, 55 (27), 7650. doi: 10.1002/anie.201600684  doi: 10.1002/anie.201600684

    77. [77]

      Wang, T.; Lv, H.; Fan, Q.; Feng, L.; Wu, X.; Zhu, J. Angew. Chem. Int. Ed. 2017, 56 (17), 4762. doi: 10.1002/anie.201701142  doi: 10.1002/anie.201701142

    78. [78]

      Langner, A.; Tait, S. L.; Lin, N.; Chandrasekar, R.; Meded, V.; Fink, K.; Ruben, M.; Kern, K. Angew. Chem. Int. Ed. 2012, 51 (18), 4327. doi: 10.1002/anie.201108530  doi: 10.1002/anie.201108530

    79. [79]

      Zhang, C.; Wang, L.; Xie, L.; Ding, Y.; Xu, W. Chem. Eur. J. 2017, 23 (10), 2356. doi: 10.1002/chem.201604775  doi: 10.1002/chem.201604775

    80. [80]

      Fukuma, T.; Higgins, M. J.; Jarvis, S. P. Phys. Rev. Lett. 2007, 98 (10), 106101. doi: 10.1103/PhysRevLett.98.106101  doi: 10.1103/PhysRevLett.98.106101

  • 加载中
    1. [1]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    8. [8]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    9. [9]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(7)
  • Abstract views(331)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return