Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions
- Corresponding author: XU Wei, xuwei@tongji.edu.cn
Citation: WANG Xinyi, XIE Lei, DING Yuanqi, YAO Xinyi, ZHANG Chi, KONG Huihui, WANG Likun, XU Wei. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1321-1333. doi: 10.3866/PKU.WHXB201802081
Snoussi, K.; Halle, B. Biochemistry 2008, 47 (46), 12219. doi: 10.1021/bi801657s
doi: 10.1021/bi801657s
Luedtke, N. W. Chim. Int. J. Chem. 2009, 63 (3), 134. doi: 10.2533/chimia.2009.134
doi: 10.2533/chimia.2009.134
Bochman, M. L.; Paeschke, K.; Zakian, V. A. Nat. Rev. Genet. 2012, 13 (11), 770. doi: 10.1038/nrg3296
doi: 10.1038/nrg3296
Koirala, D.; Dhakal, S.; Ashbridge, B.; Sannohe, Y.; Rodriguez, R.; Sugiyama, H.; Balasubramanian, S.; Mao, H. Nat. Chem. 2011, 3 (10), 782. doi: 10.1038/nchem.1126
doi: 10.1038/nchem.1126
Nicoludis, J. M.; Miller, S. T.; Jeffrey, P. D.; Barrett, S. P.; Rablen, P. R.; Lawton, T. J.; Yatsunyk, L. A. J. Am. Chem. Soc. 2012, 134 (50), 20446. doi: 10.1021/ja3088746
doi: 10.1021/ja3088746
Nicoludis, J. M.; Barrett, S. P.; Mergny, J. L.; Yatsunyk, L. A. Nucleic Acids Res. 2012, 40 (12), 5432. doi: 10.1093/nar/gks152
doi: 10.1093/nar/gks152
Davis, J. T. Angew. Chem. Int. Ed. 2004, 43 (6), 668. doi: 10.1002/anie.200300589
doi: 10.1002/anie.200300589
Lippert, B.; Gupta, D. Dalton Trans. 2009, No. 24, 4619. doi: 10.1039/B823087K
doi: 10.1039/B823087K
Gupta, D.; Huelsekopf, M.; Cerdà, M. M.; Ludwig, R.; Lippert, B. Inorg. Chem. 2004, 43 (11), 3386. doi: 10.1021/ic0353965
doi: 10.1021/ic0353965
Katritzky, A. R.; Karelson, M. J. Am. Chem. Soc. 1991, 113 (5), 1561. doi: 10.1021/ja00005a017
doi: 10.1021/ja00005a017
Goodman, M. F. Nature 1995, 378 (6554), 237. doi: 10.1038/378237a0
doi: 10.1038/378237a0
Wang, W.; Hellinga, H. W.; Beese, L. S. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (43), 17644. doi: 10.1073/pnas.1114496108
doi: 10.1073/pnas.1114496108
Zamora, F.; Kunsman, M.; Sabat, M.; Lippert, B. Inorg. Chem. 1997, 36 (8), 1583. doi: 10.1021/ic961167p
doi: 10.1021/ic961167p
Martínez, A. J. Chem. Phys. 2005, 123 (2), 024311. doi: 10.1063/1.1935507
doi: 10.1063/1.1935507
Zhao, Y. P.; Ai, H. Q.; Chen, J. P.; Yang, A. B.; Qi, Z. N. Acta Phys. -Chim Sin. 2010, 26 (12), 3322.
doi: 10.3866/PKU.WHXB20101215
Kabelac, M.; Hobza, P. J. Phys. Chem. B 2006, 110 (29), 14515. doi: 10.1021/jp062249u
doi: 10.1021/jp062249u
Russo, N.; Toscano, M.; Grand, A. J. Am. Chem. Soc. 2001, 123 (42), 10272. doi: 10.1021/ja010660j
doi: 10.1021/ja010660j
Ciesielski, A.; Lena, S.; Masiero, S.; Spada, G. P.; Samorì, P. Angew. Chem. Int. Ed. 2010, 49 (11), 1963. doi: 10.1002/anie.200905827
doi: 10.1002/anie.200905827
Furukawa, M.; Tanaka, H.; Kawai, T. Surf. Sci. 1997, 392 (1–3), L33. doi: 10.1016/S0039-6028(97)00698-5
doi: 10.1016/S0039-6028(97)00698-5
Furukawa, M.; Tanaka, H.; Kawai, T. Surf. Sci. 2000, 445 (1), 1. doi: 10.1016/S0039-6028(99)01007-9
doi: 10.1016/S0039-6028(99)01007-9
Tanaka, H.; Yoshinobu, J.; Kawai, M.; Kawai, T. Jpn. J. Appl. Phys. 1996, 35 (2B), L244. doi: 10.1143/JJAP.35.L244
doi: 10.1143/JJAP.35.L244
Tanaka, H.; Kawai, T. Jpn. J. Appl. Phys. 1996, 35 (6B), 3759. doi: 10.1143/JJAP.35.3759
doi: 10.1143/JJAP.35.3759
Tanaka, H.; Nakagawa, T.; Kawai, T. Surf. Sci. 1996, 364 (2), L575. doi: 10.1016/0039-6028(96)00792-3
doi: 10.1016/0039-6028(96)00792-3
Otero, R.; Lukas, M.; Kelly, R. E. A.; Xu, W.; Laegsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Science 2008, 319 (5861), 312. doi: 10.1126/science.1150532
doi: 10.1126/science.1150532
Tan, Q.; Zhang, C.; Wang, N.; Zhu, X.; Sun, Q.; Jacobsen, M. F.; Gothelf, K. V.; Besenbacher, F.; Hu, A.; Xu, W. Chem. Commun. 2014, 50 (3), 356. doi: 10.1039/c3cc46149a
doi: 10.1039/c3cc46149a
Otero, R.; Xu, W.; Lukas, M.; Kelly, R. E. A.; Laegsgaard, E.; Stensgaard, I.; Kjems, J.; Kantorovich, L. N.; Besenbacher, F. Angew. Chem. Int. Ed. 2008, 47 (50), 9673. doi: 10.1002/anie.200803333
doi: 10.1002/anie.200803333
Xu, W.; Wang, J. G.; Jacobsen, M. F.; Mura, M.; Yu, M.; Kelly, R. E. A.; Meng, Q. Q.; Laegsgaard, E.; Stensgaard, I.; Linderoth, T. R.; et al. Angew. Chem. Int. Ed. 2010, 49 (49), 9373. doi: 10.1002/anie.201003390
doi: 10.1002/anie.201003390
Wang, L.; Shi, H. X.; Wang, W. Y.; Shi, H.; Shao, X. Acta Phys. -Chim. Sin. 2017, 33 (2), 393.
doi: 10.3866/PKU.WHXB201611033
Chen, A. X.; Wang, H.; Duan, S.; Zhang, H. M.; Xu, X.; Chi, L. F. Acta Phys. -Chim. Sin. 2017, 33 (5), 1010.
doi: 10.3866/PKU.WHXB201702102
Zhang, C.; Xie, L.; Ding, Y.; Sun, Q.; Xu, W. ACS Nano 2016, 10 (3), 3776. doi: 10.1021/acsnano.6b00393
doi: 10.1021/acsnano.6b00393
Zhang, C.; Xie, L.; Ding, Y.; Xu, W. Chem. Commun. 2018, 54, 771. doi: 10.1039/c7cc09086b
doi: 10.1039/c7cc09086b
Xie, L.; Zhang, C.; Ding, Y.; Xu, W. Angew. Chem. Int. Ed. 2017, 56 (18), 5077. doi: 10.1002/anie.201702589
doi: 10.1002/anie.201702589
Zhang, Y.; Ding, Y.; Xie, L.; Ma, H.; Yao, X.; Zhang, C.; Yuan, C.; Xu, W. Chem. Phys. 2017, 18 (24), 3544. doi: 10.1002/cphc.201701009
doi: 10.1002/cphc.201701009
Ida, R.; Wu, G. J. Am. Chem. Soc. 2008, 130 (11), 3590. doi: 10.1021/ja709975z
doi: 10.1021/ja709975z
Kwan, I. C. M.; Wong, A.; She, Y. M.; Smith, M. E.; Wu, G. Chem. Commun. 2008, No. 6, 682. doi: 10.1039/b714803h
doi: 10.1039/b714803h
Kwan, I. C. M.; Mo, X.; Wu, G. J. Am. Chem. Soc. 2007, 129 (8), 2398. doi: 10.1021/ja067991m
doi: 10.1021/ja067991m
Kwan, I. C. M.; She, Y. M.; Wu, G. Chem. Commun. 2007, No. 41, 4286. doi: 10.1039/b710299b
doi: 10.1039/b710299b
Hurley, L. H. Nat. Rev. Cancer 2002, 2 (3), 188. doi: 10.1038/nrc749
doi: 10.1038/nrc749
Neidle, S.; Parkinson, G. Nat. Rev. Drug Discov. 2002, 1 (5), 383. doi: 10.1038/nrd793
doi: 10.1038/nrd793
González-Rodríguez, D.; Janssen, P. G. A.; Martín-Rapún, R.; De Cat, I.; De Feyter, S.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2010, 132 (13), 4710. doi: 10.1021/ja908537k
doi: 10.1021/ja908537k
Xu, W.; Wang, J.; Yu, M.; Lægsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Hammer, B.; Wang, C.; Besenbacher, F. J. Am. Chem. Soc. 2010, 132 (45), 15927. doi: 10.1021/ja1078909
doi: 10.1021/ja1078909
Xu, W.; Tan, Q.; Yu, M.; Sun, Q.; Kong, H.; Laegsgaard, E.; Stensgaard, I.; Kjems, J.; Wang, J. G.; Wang, C.; et al. Chem. Commun. 2013, 49 (65), 7210. doi: 10.1039/c3cc43302a
doi: 10.1039/c3cc43302a
Zhang, C.; Wang, L.; Xie, L.; Kong, H.; Tan, Q.; Cai, L.; Sun, Q.; Xu, W. ChemPhysChem 2015, 16 (10), 2099. doi: 10.1002/cphc.201500301
doi: 10.1002/cphc.201500301
Kong, H.; Sun, Q.; Wang, L.; Tan, Q.; Zhang, C.; Sheng, K.; Xu, W. ACS Nano 2014, 8 (2), 1804. doi: 10.1021/nn4061918
doi: 10.1021/nn4061918
Wang, L.; Kong, H.; Zhang, C.; Sun, Q.; Cai, L.; Tan, Q.; Besenbacher, F.; Xu, W. ACS Nano 2014, 8 (11), 11799. doi: 10.1021/nn5054156
doi: 10.1021/nn5054156
Langer, H.; Doltsinis, N. L. J. Chem. Phys. 2003, 118 (12), 5400. doi: 10.1063/1.1555121
doi: 10.1063/1.1555121
Lopes, R. P.; Marques, M. P. M.; Valero, R.; Tomkinson, J.; de Carvalho, L. A. E. B. Spectroscopy 2012, 27 (5–6), 273. doi: 10.1155/2012/168286
doi: 10.1155/2012/168286
Wäckerlin, C.; Iacovita, C.; Chylarecka, D.; Fesser, P.; Jung, T. A.; Ballav, N. Chem. Commun. 2011, 47 (32), 9146. doi: 10.1039/c1cc12519b
doi: 10.1039/c1cc12519b
Skomski, D.; Abb, S.; Tait, S. L. J. Am. Chem. Soc. 2012, 134 (34), 14165. doi: 10.1021/ja3053128
doi: 10.1021/ja3053128
Skomski, D.; Tait, S. L. J. Phys. Chem. C 2013, 117 (6), 2959. doi: 10.1021/jp400213a
doi: 10.1021/jp400213a
Shimizu, T. K.; Jung, J.; Imada, H.; Kim, Y. Angew. Chem. Int. Ed. 2014, 53 (50), 13729. doi: 10.1002/anie.201407555
doi: 10.1002/anie.201407555
Zhang, C.; Xie, L.; Wang, L.; Kong, H.; Tan, Q.; Xu, W. J. Am. Chem. Soc. 2015, 137 (36), 11795. doi: 10.1021/jacs.5b07314
doi: 10.1021/jacs.5b07314
Xie, L.; Zhang, C.; Ding, Y.; E, W.; Yuan, C.; Xu, W. Chem. Commun. 2017, 53 (62), 8767. doi: 10.1039/c7cc04446a
doi: 10.1039/c7cc04446a
Xu, W.; Kelly, R. E. A.; Gersen, H.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Small 2009, 5 (17), 1952. doi: 10.1002/smll.200900315
doi: 10.1002/smll.200900315
Liu, J.; Lin, T.; Shi, Z.; Xia, F.; Dong, L.; Liu, P. N.; Lin, N. J. Am. Chem. Soc. 2011, 133 (46), 18760. doi: 10.1021/ja2056193
doi: 10.1021/ja2056193
Xu, W.; Kelly, R. E. A.; Otero, R.; Schöck, M.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Small 2007, 3 (12), 2011. doi: 10.1002/smll.200700625
doi: 10.1002/smll.200700625
Schlickum, U.; Klappenberger, F.; Decker, R.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Kern, K.; Brune, H.; Barth, J. V. J. Phys. Chem. C 2010, 114 (37), 15602. doi: 10.1021/jp104518h
doi: 10.1021/jp104518h
Abdurakhmanova, N.; Floris, A.; Tseng, T. C.; Comisso, A.; Stepanow, S.; De Vita, A.; Kern, K. Nat. Commun. 2012, 3, 940. doi: 10.1038/ncomms1942
doi: 10.1038/ncomms1942
Shi, Z.; Liu, J.; Lin, T.; Xia, F.; Liu, P. N.; Lin, N. J. Am. Chem. Soc. 2011, 133 (16), 6150. doi: 10.1021/ja2010434
doi: 10.1021/ja2010434
Yu, M.; Xu, W.; Kalashnyk, N.; Benjalal, Y.; Nagarajan, S.; Masini, F.; Lægsgaard, E.; Hliwa, M.; Bouju, X.; Gourdon, A.; et al. Nano Res. 2012, 5 (12), 903. doi: 10.1007/s12274-012-0274-6
doi: 10.1007/s12274-012-0274-6
Kong, H.; Wang, L.; Tan, Q.; Zhang, C.; Sun, Q.; Xu, W. Chem. Commun. 2014, 50 (24), 3242. doi: 10.1039/c3cc49241a
doi: 10.1039/c3cc49241a
Padermshoke, A.; Katsumoto, Y.; Masaki, R.; Aida, M. Chem. Phys. Lett. 2008, 457 (1), 232. doi: 10.1016/j.cplett.2008.04.029
doi: 10.1016/j.cplett.2008.04.029
Auwärter, W.; Seufert, K.; Bischoff, F.; Ecija, D.; Vijayaraghavan, S.; Joshi, S.; Klappenberger, F.; Samudrala, N.; Barth, J. V. Nat. Nanotechnol. 2012, 7 (1), 41. doi: 10.1038/NNANO.2011.211
doi: 10.1038/NNANO.2011.211
Pan, S.; Fu, Q.; Huang, T.; Zhao, A.; Wang, B.; Luo, Y.; Yang, J.; Hou, J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (36), 15259. doi: 10.1073/pnas.0903131106
doi: 10.1073/pnas.0903131106
Kumagai, T.; Hanke, F.; Gawinkowski, S.; Sharp, J.; Kotsis, K.; Waluk, J.; Persson, M.; Grill, L. Nat. Chem. 2014, 6 (1), 41. doi: 10.1038/nchem.1804
doi: 10.1038/nchem.1804
Kong, H.; Wang, L.; Sun, Q.; Zhang, C.; Tan, Q.; Xu, W. Angew. Chem. Int. Ed. 2015, 54 (22), 6526. doi: 10.1002/anie.201501701
doi: 10.1002/anie.201501701
Kong, H.; Zhang, C.; Xie, L.; Wang, L.; Xu, W. Angew. Chem. Int. Ed. 2016, 55 (25), 7157. doi: 10.1002/anie.201602572
doi: 10.1002/anie.201602572
Zhang, C.; Sun, Q.; Chen, H.; Tan, Q.; Xu, W. Chem. Commun. 2015, 51 (3), 495. doi: 10.1039/c4cc07953a
doi: 10.1039/c4cc07953a
Fan, Q.; Gottfried, J. M.; Zhu, J. Acc. Chem. Res. 2015, 48 (8), 2484. doi: 10.1021/acs.accounts.5b00168
doi: 10.1021/acs.accounts.5b00168
Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. ACS Nano 2016, 10 (7), 7023. doi: 10.1021/acsnano.6b03048
doi: 10.1021/acsnano.6b03048
Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. Chem. Commun. 2016, 52 (35), 6009. doi: 10.1039/c6cc01059h
doi: 10.1039/c6cc01059h
Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M. J.; et al. Am. Chem. Soc. 2010, 132 (46), 16669. doi: 10.1021/ja107947z
doi: 10.1021/ja107947z
Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. Nat. Chem. 2012, 4 (3), 215. doi: 10.1038/NCHEM.1242
doi: 10.1038/NCHEM.1242
Kaposi, T.; Joshi, S.; Hoh, T.; Wiengarten, A.; Seufert, K.; Paszkiewicz, M.; Klappenberger, F.; Ecija, D.; Đorđević, L.; Marangoni, T. ACS Nano 2016, 10 (8), 7665. doi: 10.1021/acsnano.6b02989
doi: 10.1021/acsnano.6b02989
Rastgoo-Lahrood, A.; Björk, J.; Lischka, M.; Eichhorn, J.; Kloft, S.; Fritton, M.; Strunskus, T.; Samanta, D.; Schmittel, M.; Heckl, W. M.; et al. Angew. Chem. Int. Ed. 2016, 55 (27), 7650. doi: 10.1002/anie.201600684
doi: 10.1002/anie.201600684
Wang, T.; Lv, H.; Fan, Q.; Feng, L.; Wu, X.; Zhu, J. Angew. Chem. Int. Ed. 2017, 56 (17), 4762. doi: 10.1002/anie.201701142
doi: 10.1002/anie.201701142
Langner, A.; Tait, S. L.; Lin, N.; Chandrasekar, R.; Meded, V.; Fink, K.; Ruben, M.; Kern, K. Angew. Chem. Int. Ed. 2012, 51 (18), 4327. doi: 10.1002/anie.201108530
doi: 10.1002/anie.201108530
Zhang, C.; Wang, L.; Xie, L.; Ding, Y.; Xu, W. Chem. Eur. J. 2017, 23 (10), 2356. doi: 10.1002/chem.201604775
doi: 10.1002/chem.201604775
Fukuma, T.; Higgins, M. J.; Jarvis, S. P. Phys. Rev. Lett. 2007, 98 (10), 106101. doi: 10.1103/PhysRevLett.98.106101
doi: 10.1103/PhysRevLett.98.106101
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355