Citation: HOU Yucui, YAO Congfei, WU Weize. Deep Eutectic Solvents: Green Solvents for Separation Applications[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 873-885. doi: 10.3866/PKU.WHXB201802062 shu

Deep Eutectic Solvents: Green Solvents for Separation Applications


  • Author Bio:

    Dr. WU Weize, born in 1967, obtained his bachelor at Dalian University of Technology in 1989. Then, he worked and studied at Institute of Coal Chemistry, CAS, where he received his Ph.D. In 2002, he moved to Institute of Chemistry, CAS as an associate professor. From 2004 to 2006, he worked as a Research Fellow at the University of Nottingham, UK. In 2006, he came to Beijing University of Chemical Technology, where he is currently Professor of Chemical Engineering. His research focuses on coal conversion to chemicals, biomass conversion to chemicals, purification of flue gas, applications of DESs, ILs and SCFs in separations. He has authored more than 160 peer-reviewed papers and 18 patents
  • Corresponding author: WU Weize, wzwu@mail.buct.edu.cn
  • Received Date: 8 January 2018
    Revised Date: 25 January 2018
    Accepted Date: 26 January 2018
    Available Online: 6 August 2018

    Fund Project: Specialized Research Fund for the Doctoral Program of Higher Education 20120010110005the National Basic Research Program of China 2011CB201303This work is financially supported by the National Basic Research Program of China (2011CB201303) and Specialized Research Fund for the Doctoral Program of Higher Education (20120010110005)

  • Deep eutectic solvents (DESs) are regarded as a new class of green solvents because of their unique properties such as easy synthesis, low cost, environmental friendliness, low volatility, high dissolution power, high biodegradability, and feasibility of structural design. DESs have been widely applied for the separation of mixtures as alternatives to conventional solvents. A DES usually consists of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA). HBAs include amides, thiourea, amines, imidazole, azole, alcohols, acids and phenol. HBAs include quaternary ammonium salts, quaternary phosphonium salts, imidazolium-based salts, dication based salts, inner salts, and molecular imidazole and its analogues. Therefore, there are numerous DESs available for use in different applications. With an in-depth understanding of the common and novel properties of DESs, researchers have prepared and applied DESs to various types of separations. We first introduce the composition of DESs, including various HBDs and HBAs frequently used in the literature. Second, the properties of DESs, including phase diagrams, melting points, density, viscosity, and conductivity, are summarized. Third, recent applications of DESs in the separation of mixtures are reviewed, including the absorption of acidic gases (CO2, SO2 and H2S), the extraction of bioactive compounds, extraction of sulfur-and nitrogen-containing compounds from fuel oils, extraction of phenolic compounds from oils, separation of mixtures of aromatic and aliphatic compounds, separation of alcohol and water mixtures, removal of glycerol from biodiesel, separation of alcohol and ester mixtures, removal of radioactive nuclear contaminants, and separation of isomer mixtures of benzene carboxylic acids. DESs are used in two ways for the separation of mixtures. (1) A DES prepared in advance is used as a solvent to separate a component from a mixture by selective dissolution or absorption of specific compound(s), such as the absorption of SO2 using betaine+ethylene glycol DES. Here, DESs are used like traditional solvents. (2) A DES is formed in situ during the separation of mixtures by adding a HBA to a mixture containing one or more HBDs, such as the removal of phenol from an oil mixture using choline chloride, where a phenol+choline chloride DES is formed during the separation process and the formed DES does not dissolve in the oil phase. Although various DESs have been broadly developed for the separation of mixtures, research continues in the field of DESs, including analysis of the physicochemical properties of DES, especially during extraction or absorption, development of functional DESs for high-efficiency separations, development of efficient methods to regenerate DESs, and combined use of DESs with other techniques to improve separation processes. This article describes general trends in the development of DESs for separation and evaluates the problematic or challenging aspects of DESs in the separation of mixtures.
  • 加载中
    1. [1]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2003, No. 1, 70. doi: 10.1039/B210714G  doi: 10.1039/B210714G

    2. [2]

      Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. J. Am. Chem. Soc. 2004, 126 (29), 9142. doi: 10.1021/ja048266j  doi: 10.1021/ja048266j

    3. [3]

      Ji, Y. A.; Hou, Y. C.; Ren, S. H.; Niu, M. G.; Yao, C. F.; Wu, W. Z. Fuel 2018, 215, 330. doi: 10.1016/j.fuel.2017.10.057  doi: 10.1016/j.fuel.2017.10.057

    4. [4]

      Abbott, A. P.; Cullis, P. M.; Gibson, M. J.; Harris, R. C.; Raven, E. Green Chem. 2007, 9, 868. doi: 10.1039/B702833D  doi: 10.1039/B702833D

    5. [5]

      Lópezporfiri, P.; Brennecke, J. F.; Gonzalezmiquel, M. J. Chem. Eng. Data 2016, 61 (12), 4245. doi: 10.1021/acs.jced.6b00608  doi: 10.1021/acs.jced.6b00608

    6. [6]

      Hou, Y. W.; Gu, Y. Y.; Zhang, S. M.; Yang, F.; Ding, H. M.; Shan, Y. K. J. Molecul. Liquids 2008, 143, 154. doi: 10.1016/j.molliq.2008.07.009  doi: 10.1016/j.molliq.2008.07.009

    7. [7]

      Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114 (21), 11060. doi: 10.1021/cr300162p  doi: 10.1021/cr300162p

    8. [8]

      Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156. doi: 10.1039/b103275p  doi: 10.1039/b103275p

    9. [9]

      Hayyan, M.; Aissaoui, T.; Hashim, M. A.; Alsaadi, A. H.; Hayyan, A. J. Taiwan Inst. Chem. Eng. 2015, 50 (15), 24. doi: 10.1016/j.jtice.2015.03.001  doi: 10.1016/j.jtice.2015.03.001

    10. [10]

      Ji, Y. A.; Hou, Y. C.; Ren, S. H.; Yao, C. F.; Wu, W. Z. Fuel Process. Technol. 2018, 171, 181. doi: 10.1016/j.fuproc.2017.11.015  doi: 10.1016/j.fuproc.2017.11.015

    11. [11]

      Ji, Y. A.; Hou, Y. C.; Ren, S. H.; Yao, C. F.; Wu, W. Z. Energy Fuels 2017, 31 (9), 10274. doi: 10.1021/acs.energyfuels.7b01793  doi: 10.1021/acs.energyfuels.7b01793

    12. [12]

      Zetzsche, F.; Sukiennik, S. Helv. Chim. Acta 1927, 10, 91. doi: 10.1002/hlca.19270100111  doi: 10.1002/hlca.19270100111

    13. [13]

      Li, X. Q.; Yang, Y. X.; Wang, W. L.; Hu, B.; Xue, H. M.; Zhang, T. Y.; Zhang, X. T. Chin. Chem. Lett. 2011, 22, 765. doi: 10.1016/j.cclet.2011.01.007  doi: 10.1016/j.cclet.2011.01.007

    14. [14]

      Liu, B.; Zhao, J.; Wei, F. J. Molecul. Liquids 2013, 180 (7), 19. doi: 10.1016/j.molliq.2012.12.024  doi: 10.1016/j.molliq.2012.12.024

    15. [15]

      Hussein, M. A.; Tay, G. S.; Rozman, H. D. J. Appl. Polymer Sci. 2011, 123 (2), 968. doi: 10.1002/app.34681  doi: 10.1002/app.34681

    16. [16]

      Bogdan, A. J. Phys. Chem. A 2010, 114 (37), 10135. doi: 10.1021/jp105699s  doi: 10.1021/jp105699s

    17. [17]

      Guo, W. J.; Hou, Y. C.; Ren, S. H.; Tian, S. D.; Wu, W. Z. J. Chem. Eng. Data 2013, 58, 866. doi: 10.1021/je300997v  doi: 10.1021/je300997v

    18. [18]

      Abbott, A. P.; Harris, R. C.; Ryder, K. S.; D'Agostino, C.; Gladden, L. F.; Mantle, M. D. Green Chem. 2011, 13, 82. doi: 10.1039/C0GC00395F  doi: 10.1039/C0GC00395F

    19. [19]

      Shahbaz, K.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. Fluid Phase Equilibria 2012, 319, 48. doi: 10.1016/j.fluid.2012.01.025  doi: 10.1016/j.fluid.2012.01.025

    20. [20]

      Yang, D.; Hou, M.; Ning, H.; Zhang, J.; Ma, J.; Yang, G.; Han, B. Green Chem. 2013, 15 (8), 2261. doi: 10.1039/c3gc40815a  doi: 10.1039/c3gc40815a

    21. [21]

      Sun, S.; Niu, Y.; Xu, Q.; Sun, Z.; Wei, X. Ind. Eng. Chem. Res. 2015, 54 (33), 8019. doi: 10.1021/acs.iecr.5b01789  doi: 10.1021/acs.iecr.5b01789

    22. [22]

      Guo, B.; Duan, E.; Ren, A.; Wang, Y.; Liu, H. J. Chem. Eng. Data 2010, 55 (3), 1398. doi: 10.1021/je900565e  doi: 10.1021/je900565e

    23. [23]

      Liu, B.; Wei, F.; Zhao, J.; Wang, Y. Rsc Adv. 2013, 3 (7), 2470. doi: 10.1039/c2ra22990k  doi: 10.1039/c2ra22990k

    24. [24]

      Yang, D.; Han, Y.; Qi, H.; Wang, Y.; Dai, S. Acs Sustain. Chem. Eng. 2017, 6382. doi: 10.1021/acssuschemeng.7b01554  doi: 10.1021/acssuschemeng.7b01554

    25. [25]

      Zhang, K.; Ren, S.; Hou, Y.; Wu, W. J. Hazard. Mat. 2016, 324, 457. doi: 10.1016/j.jhazmat.2016.11.012  doi: 10.1016/j.jhazmat.2016.11.012

    26. [26]

      Zhang, K.; Ren, S.; Meng, L.; Hou, Y.; Wu, W.; Bao, Y. Energy Fuels 2017, 31 (2), 1786. doi: 10.1021/acs.energyfuels.6b02953  doi: 10.1021/acs.energyfuels.6b02953

    27. [27]

      Zhang, K.; Ren, S.; Yang, X.; Hou, Y.; Wu, W.; Bao, Y. Chem. Eng. J. 2017, 327, 128. doi: 10.1016/j.cej.2017.06.081  doi: 10.1016/j.cej.2017.06.081

    28. [28]

      Deng, D.; Liu, X.; Gao, B. Ind. Eng. Chem. Res. 2017, 56 (46), 13850. doi: 10.1021/acs.iecr.7b02478  doi: 10.1021/acs.iecr.7b02478

    29. [29]

      Zhang, K.; Ren, S.; Hou, Y.; Wu, W.; Bao, Y. Ind. Eng. Chem. Res. 2017, 56, 13844. doi: 10.1021/acs.iecr.7b02023  doi: 10.1021/acs.iecr.7b02023

    30. [30]

      Li, X.; Hou, M.; Han, B.; Wang, X.; Zou, L. J Chem. Eng. Data 2014, 53 (2), 548. doi: 10.1021/je700638u  doi: 10.1021/je700638u

    31. [31]

      Leron, R. B.; Li, M. H. J. Chem. Thermodyn. 2013, 57 (1), 131. doi: 10.1016/j.jct.2012.08.025  doi: 10.1016/j.jct.2012.08.025

    32. [32]

      Lin, C. M.; Leron, R. B.; Caparanga, A. R.; Li, M. H. Journal of Chemical Thermodynamics 2014, 68, 216. doi: 10.1016/j.jct.2013.08.029  doi: 10.1016/j.jct.2013.08.029

    33. [33]

      Francisco, M.; Bruinhorst, A. V. D.; Zubeir, L. F.; Peters, C. J.; Kroon, M. C. Fluid Phase Equilibria 2013, 340, 77. doi: 10.1016/j.fluid.2012.12.001  doi: 10.1016/j.fluid.2012.12.001

    34. [34]

      Lu, M.; Han, G.; Jiang, Y.; Zhang, X.; Deng, D.; Ai, N. J. Chem. Thermodyn. 2015, 88, 72. doi: 10.1016/j.jct.2015.04.021  doi: 10.1016/j.jct.2015.04.021

    35. [35]

      Liu, X.; Gao, B.; Jiang, Y.; Ai, N.; Deng, D. J. Chem. Eng. Data 2017, 62 (4), 1448. doi: 10.1021/acs.jced.6b01013  doi: 10.1021/acs.jced.6b01013

    36. [36]

      Sze, L. L.; Pandey, S.; Ravula, S.; Pandey, S.; Zhao, H.; Baker, G. A.; Baker, S. N.Acs Sustain. Chem. Eng. 2014, 2 (9), 2117. doi: 10.1021/sc5001594  doi: 10.1021/sc5001594

    37. [37]

      Ali, E.; Hadj-Kali, M. K.; Mulyono, S.; Alnashef, I.; Fakeeha, A.; Mjalli, F.; Hayyan, A. Chem. Eng. Res. Design 2014, 92 (10), 1898. doi: 10.1016/j.cherd.2014.02.004  doi: 10.1016/j.cherd.2014.02.004

    38. [38]

      Trivedi, T. J.; Ji, H. L.; Lee, H. J.; You, K. J.; Choi, J. W. Green Chem. 2016, 18 (9), 2834. doi: 10.1039/c5gc02319j  doi: 10.1039/c5gc02319j

    39. [39]

      Guo, B.; Duan, E.; Zhong, Y.; Gao, L.; Zhang, X.; Zhao, D. Energy Fuels 2011, 25 (1), 159. doi: 10.1021/ef1012006  doi: 10.1021/ef1012006

    40. [40]

      Dai, Y.; Witkamp, G. J.; Verpoorte, R.; Choi, Y. H. Anal. Chem. 2013, 85 (13), 6272. doi: 10.1021/ac400432p  doi: 10.1021/ac400432p

    41. [41]

      Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y. H. J. Chromat. A 2016, 1434, 50. doi: 10.1016/j.chroma.2016.01.037  doi: 10.1016/j.chroma.2016.01.037

    42. [42]

      Xu, K.; Wang, Y.; Huang, Y.; Li, N.; Wen, Q. Anal. Chim. Acta 2015, 864, 9. doi: 10.1016/j.aca.2015.01.026  doi: 10.1016/j.aca.2015.01.026

    43. [43]

      Min, W. N.; Jing, Z.; Min, S. L.; Ji, H. J.; Lee, J. Green Chem. 2014, 17 (3), 1718. doi: 10.1039/c4gc01556h  doi: 10.1039/c4gc01556h

    44. [44]

      Bosiljkov, T.; Dujmić, F.; Bubalo, M. C.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Redovniković, I. R.; Jokić, S. Food Bioprod. Process. 2017, 102, 195. doi: 10.1016/j.fbp.2016.12.005  doi: 10.1016/j.fbp.2016.12.005

    45. [45]

      Cui, Q.; Peng, X.; Yao, X. H.; Wei, Z. F.; Luo, M.; Wang, W.; Zhao, C. J.; Fu, Y. J.; Zu, Y. G. Sep. Purif. Technol. 2015, 150, 63. doi: 10.1016/j.seppur.2015.06.026  doi: 10.1016/j.seppur.2015.06.026

    46. [46]

      Bakirtzi, C.; Triantafyllidou, K.; Makris, D. P. J. Appl. Res. Medic. Arom. Plants 2016, 3 (3), 120. doi: 10.1016/j.jarmap.2016.03.003  doi: 10.1016/j.jarmap.2016.03.003

    47. [47]

      Cao, J.; Yang, M.; Cao, F.; Wang, J.; Su, E. Acs Sustain. Chem. Eng. 2017, 5 (4), 3270. doi: 10.1021/acssuschemeng.6b03092  doi: 10.1021/acssuschemeng.6b03092

    48. [48]

      Peng, X.; Duan, M. H.; Yao, X. H.; Zhang, Y. H.; Zhao, C. J.; Zu, Y. G.; Fu, Y. J. Sep. Purific. Technol. 2016, 157, 249. doi: 10.1016/j.seppur.2015.10.065  doi: 10.1016/j.seppur.2015.10.065

    49. [49]

      Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Sep. Purif. Technol. 2015, 149, 237. doi: 10.1016/j.seppur.2015.05.015  doi: 10.1016/j.seppur.2015.05.015

    50. [50]

      Khezeli, T.; Daneshfar, A.; Sahraei, R. Talanta 2016, 150, 577. doi: 10.1016/j.talanta.2015.12.077  doi: 10.1016/j.talanta.2015.12.077

    51. [51]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Shikotra, P. Inorg. Chem. 2005, 44 (19), 6497. doi: 10.1021/ic0505450  doi: 10.1021/ic0505450

    52. [52]

      van Osch, D. J.; Parmentier, D.; Dietz, C. H.; Van, d. B. A.; Tuinier, R.; Kroon, M. C. Chem. Commun. 2016, 52 (80), 11987. doi: 10.1039/c6cc06105b  doi: 10.1039/c6cc06105b

    53. [53]

      Li, C.; Li, D.; Zou, S.; Li, Z.; Yin, J.; Wang, A.; Cui, Y.; Yao, Z.; Zhao, Q. Green Chem. 2013, 15 (10), 2793. doi: 10.1039/c3gc41067f  doi: 10.1039/c3gc41067f

    54. [54]

      Li, C.; Zhang, J.; Li, Z.; Yin, J.; Cui, Y.; Liu, Y.; Yang, G. Green Chem. 2016, 18 (13), 3789. doi: 10.1039/c6gc00366d  doi: 10.1039/c6gc00366d

    55. [55]

      Gano, Z. S.; Mjalli, F. S.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Alnashef, I. M. Chem. Eng. Process. Process Intensif. 2015, 93, 10. doi: 10.1016/j.cep.2015.04.001  doi: 10.1016/j.cep.2015.04.001

    56. [56]

      Ali, M. C.; Yang, Q.; Fine, A. A.; Jin, W.; Zhang, Z.; Xing, H.; Ren, Q. Green Chem. 2015, 18 (1), 157. doi: 10.1039/c5gc01823d  doi: 10.1039/c5gc01823d

    57. [57]

      Hizaddin, H. F.; Ramalingam, A.; Hashim, M. A.; Hadj-Kali, M. K. O. J. Chem. Eng. Data2016, 59 (11), 3470. doi: 10.1021/je500430211  doi: 10.1021/je500430211

    58. [58]

      Hizaddin, H. F.; Hadj-Kali, M. K.; Ramalingam, A.; Hashim, M. A. J. Chem Thermodyn. 2016, 95, 164. doi: 10.1016/j.jct.2015.12.009  doi: 10.1016/j.jct.2015.12.009

    59. [59]

      Pang, K.; Hou, Y.; Wu, W.; Guo, W.; Peng, W.; Marsh, K. N. Green Chem. 2012, 14 (9), 2398. doi: 10.1039/c2gc35400d  doi: 10.1039/c2gc35400d

    60. [60]

      Guo, W. J.; Hou, Y. C.; Wu, W. Z.; Ren, S. H.; Tian, S. D.; Marsh, K. N. Green Chem. 2013, 15 (1), 226. doi: 10.1039/c2gc36602a  doi: 10.1039/c2gc36602a

    61. [61]

      Ren, S. H.; Xiao, Y.; Wang, Y. M.; Kong, J.; Hou, Y. C.; Wu, W. Z. Fuel Process. Technol. 2015, 137, 104. doi: 10.1016/j.fuproc.2015.04.004  doi: 10.1016/j.fuproc.2015.04.004

    62. [62]

      Jiao, T. T.; Li, C. S.; Zhuang, X. L.; Cao, S. S.; Chen, H. N.; Zhang, S. J. Chem. Eng. J. 2015, 266 (APR), 148. doi: 10.1016/j.cej.2014.12.071  doi: 10.1016/j.cej.2014.12.071

    63. [63]

      Jiao, T. T.; Zhuang, X. L.; He, H. Y.; Li, C. S.; Chen, H. N.; Zhang, S. J. Ind. Eng. Chem. Res. 2015, 54 (9), 2573. doi: 10.1021/ie504892g  doi: 10.1021/ie504892g

    64. [64]

      Yao, C.; Hou, Y.; Ren, S.; Wu, W.; Zhang, K.; Ji, Y.; Liu, H. Chem. Eng. J. 2017, 326, 620. doi: 10.1016/j.cej.2017.06.007  doi: 10.1016/j.cej.2017.06.007

    65. [65]

      Kareem, M. A.; Mjalli, F. S.; Hashim, M. A.; Alnashef, I. M. Fluid Phase Equilibria 2012, 314 (3), 52. doi: 10.1016/j.fluid.2011.10.024  doi: 10.1016/j.fluid.2011.10.024

    66. [66]

      Kareem, M. A.; Mjalli, F. S.; Hashim, M. A.; Hadj-Kali, M. K. O.; Bagh, F. S. G.; Alnashef, I. M. Fluid Phase Equilibria 2012, 333 (4), 47. doi: 10.1016/j.fluid.2012.07.020  doi: 10.1016/j.fluid.2012.07.020

    67. [67]

      Mulyono, S.; Hizaddin, H.; Alnashef, I.; Hashim, M.; Fakeeha, A.; HadjKali, M. RSC Adv. 2014, 4 (34), 17597. doi: 10.1039/c4ra01081g  doi: 10.1039/c4ra01081g

    68. [68]

      Rodriguez, N. R.; Requejo, P. F.; Kroon, M. C. Ind. Eng. Chem. Res. 2015, 54 (45), 11404. doi: 10.1021/acs.iecr.5b02611  doi: 10.1021/acs.iecr.5b02611

    69. [69]

      Rodriguez, N. R.; Gerlach, T.; Scheepers, D.; Kroon, M. C.; Smirnova, I. J. Chem. Thermodyn. 2017, 104, 128. doi: 10.1016/j.jct.2016.09.021  doi: 10.1016/j.jct.2016.09.021

    70. [70]

      Hou, Y. C.; Li, Z. Y.; Ren, S. H.; Wu, W. Z. Fuel Process.Technol. 2015, 135, 99. doi: 10.1016/j.fuproc.2014.11.001  doi: 10.1016/j.fuproc.2014.11.001

    71. [71]

      Wang, Y.; Hou, Y.; Wu, W.; Liu, D.; Ji, Y.; Ren, S. Green Chem. 2016, 18 (10), 3089. doi: 10.1039/c5gc02909k  doi: 10.1039/c5gc02909k

    72. [72]

      Rodríguez, N. R.; González, A. S. B.; Tijssen, P. M. A.; Kroon, M. C. Fluid Phase Equilibria 2015, 385, 72. doi: 10.1016/j.fluid.2014.10.044  doi: 10.1016/j.fluid.2014.10.044

    73. [73]

      Gjineci, N.; Boli, E.; Tzani, A.; Detsi, A.; Voutsas, E. Fluid Phase Equilibria 2016, 424, 1. doi: 10.1016/j.fluid.2015.07.048  doi: 10.1016/j.fluid.2015.07.048

    74. [74]

      Hayyan, M.; Mjalli, F. S.; Hashim, M. A.; Hashim, M. A.; AlNashef, I. M. Fuel Process.Technol. 2010, 91, 116. doi: 10.1016/j.fuproc.2009.09.002  doi: 10.1016/j.fuproc.2009.09.002

    75. [75]

      Shahbaz, K.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. Energy Fuels 2011, 25, 2671. doi: 10.1021/ef2004943  doi: 10.1021/ef2004943

    76. [76]

      Maugeri, Z.; Leitner, W.; de María, P. D. Tetrahedr. Lett. 2012, 53, 6968. doi: 10.1016/j.tetlet.2012.10.044  doi: 10.1016/j.tetlet.2012.10.044

    77. [77]

      Li, G.; Yan, C.; Cao, B.; Jiang, J.; Zhao, W.; Wang, J.; Mu, T. Green Chem. 2016, 18 (8), 2522. doi: 10.1039/c5gc02691a  doi: 10.1039/c5gc02691a

    78. [78]

      Hou, Y. C.; Li, J.; Ren, S. H.; Niu, M. G.; Wu, W. Z. J. Phys. Chem. B 2014, 118 (47), 13646. doi: 10.1021/jp5084136  doi: 10.1021/jp5084136

  • 加载中
    1. [1]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    2. [2]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    3. [3]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    6. [6]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    7. [7]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    8. [8]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    9. [9]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    10. [10]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    11. [11]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    12. [12]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    13. [13]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    14. [14]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    15. [15]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    16. [16]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    17. [17]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    18. [18]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    19. [19]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    20. [20]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

Metrics
  • PDF Downloads(14)
  • Abstract views(269)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return