Citation: GAO Yunnan, LIU Shizhen, ZHAO Zhenqing, TAO Hengcong, SUN Zhenyu. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 858-872. doi: 10.3866/PKU.WHXB201802061 shu

Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products


  • Author Bio:



    SUN Zhenyu is currently a full professor in the College of Chemical Engineering at Beijing University of Chemical Technology (China). He completed his Ph.D. in the Institute of Chemistry, Chinese Academy of Sciences in 2006. He did postdoctoral research in Trinity College Dublin (Ireland) from 2006 to 2008, at Ruhr University Bochum (Germany) from 2011 to 2014, and University of Oxford from 2015 to 2016. He has obtained a Humboldt Research Fellowship for Experienced Researchers (Germany). His current research focuses on energy conversion reactions using two-dimensional materials
  • Corresponding author: SUN Zhenyu, sunzy@mail.buct.edu.cn
  • Received Date: 5 January 2018
    Revised Date: 29 January 2018
    Accepted Date: 29 January 2018
    Available Online: 6 August 2018

    Fund Project: the State Key Laboratory of Organic-Inorganic Composites, China oic-201503005Fundamental Research Funds for the Central Universities, China buctrc201525The project was supported by the State Key Laboratory of Organic-Inorganic Composites, China (oic-201503005), Fundamental Research Funds for the Central Universities, China (buctrc201525) and Beijing National Laboratory for Molecular Sciences, China (BNLMS20160133)Beijing National Laboratory for Molecular Sciences, China BNLMS20160133

  • The increasing anthropogenic emission of CO2 leads to global warming, to address which three strategies can be considered: (1) decrease fossil fuel consumption through increased utilization efficiency and lower per capita consumption; (2) replace fossil fuels with renewable energy sources like wind, tidal, solar, and biomass energies; (3) utilize CO2 efficiently. Despite efforts to reduce energy use and increase the use of carbon-neutral biofuels, it seems that fossil fuels will continue to be a major energy source for the next few decades. Tremendous effort is therefore being focused on developing effective technologies for CO2 capture and transformation. In particular, the transformation of CO2 into fuels and chemicals via reduction with renewable hydrogen is a promising strategy for mitigating global warming and energy supply problems. The hydrogenation of CO2, especially to C2+ hydrocarbons and oxygenates, has sparked growing interest. The C2+ species can be used as entry platform chemicals for existing value chains, thus providing more advantages than C1 compounds. However, optimizing catalyst design by integrating multifunctionalities for both CO2 activation and C-C coupling remains an ongoing challenge. Here, we provide a timely review on the recent progress that has been made in the hydrogenation of CO2 to higher-order alkanes, olefins, and alcohols by various heterogeneous catalysts. The thermodynamics and kinetics, as well as possible reaction pathways for CO2 hydrogenation, are discussed. The hydrogenation of CO2 to hydrocarbons usually involves the initial generation of CO via a reverse water-gas shift (RWGS) reaction followed by hydrogenation of the CO intermediate. The RWGS reaction proceeds through a redox route and an associative pathway. "CHx" insertion (carbide-type) and "CO" insertion are two proposed mechanisms for this Fischer-Tropsch-like synthesis. Fe-or Co-based catalysts have been widely used to catalyze the hydrogenation of CO2 to C2+ hydrocarbons via the CO intermediate. C2+ hydrocarbons can also be obtained by combining CH3OH synthesis with the methanol-to-hydrocarbon process (MTH). This reaction pathway has been realized over bifunctional systems comprising a CH3OH synthesis catalyst and an MTH catalyst. Alternatively, CO2 hydrogenation can occur via a RWGS reaction to the CO intermediate, and subsequent formation of higher alcohols from syngas. Higher alcohols (mostly CH3CH2OH) have been produced by using a hybrid tandem catalyst. Understanding of the activation mechanism, precise C-C coupling, and synergy control between the two active components requires further research. In the final part, we describe the future challenges and opportunities in heterogeneous catalysis of CO2 hydrogenation. The combination of calculations (precise theoretical models) and experiments (in-situ spectroscopic techniques) will facilitate the design of advanced catalysts to achieve both high CO2 conversion and C2+ product selectivity.
  • 加载中
    1. [1]

      Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez, R. J. Energ. Environ. Sci. 2013, 6, 3112. doi: 10.1039/c3ee41272e  doi: 10.1039/c3ee41272e

    2. [2]

      Caldeira, K.; Wickett, M. E. Nature 2003, 425, 365. doi: 10.1038/425365a  doi: 10.1038/425365a

    3. [3]

      Porosoff, M. D.; Yan, B. H.; Chen, J. G. G. Energ. Environ. Sci. 2016, 9, 62. doi: 10.1039/c5ee02657a  doi: 10.1039/c5ee02657a

    4. [4]

      Centi, G.; Quadrelli, E. A.; Perathoner, S. Energ. Environ. Sci. 2013, 6, 1711. doi: 10.1039/c3ee00056g  doi: 10.1039/c3ee00056g

    5. [5]

      Ma, T.; Fan, Q.; Tao, H. C.; Han, Z. S.; Jia, M. W.; Gao, Y. N.; Ma, W. J.; Sun, Z. Y. Nanotechnology 2017, 28, 472001. doi: 10.1088/1361-6528/Aa8f6f  doi: 10.1088/1361-6528/Aa8f6f

    6. [6]

      Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Strunk, J.; Muhler, M.; Chen, J. F. Angew. Chem. Int. Ed. 2018, doi: 10.1002/ange.201710509  doi: 10.1002/ange.201710509

    7. [7]

      Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Chem 2017, 3, 560. doi: 10.1016/j.chempr.2017.09.009  doi: 10.1016/j.chempr.2017.09.009

    8. [8]

      Zhang, L.; Zhao, Z. J.; Gong, J. L. Angew. Chem. Int. Ed. 2017, 56, 11326. doi: 10.1002/anie.201612214  doi: 10.1002/anie.201612214

    9. [9]

      Tao, H. C.; Sun, X. F.; B., S.; Han, Z. S.; Zhu, Q. G.; R., A. W.; Ma, T.; Fan, Q.; X., H. B.; Jung, Y.; Sun, Z. Y. Chem. Sci. 2018, 9, 483. doi: 10.1039/C7SC03018E  doi: 10.1039/C7SC03018E

    10. [10]

      Tao, H. C.; Gao, Y. A.; Talreja, N.; Guo, F.; Texter, J.; Yan, C.; Sun, Z. Y. J. Mater. Chem. A 2017, 5, 7257. doi: 10.1039/c7ta00075h  doi: 10.1039/c7ta00075h

    11. [11]

      Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. doi: 10.1002/anie.201207199  doi: 10.1002/anie.201207199

    12. [12]

      Chang, X. X.; Wang, T.; Gong, J. L. Energ. Environ. Sci. 2016, 9, 2177. doi: 10.1039/c6ee00383d  doi: 10.1039/c6ee00383d

    13. [13]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.; Havecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L.; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831  doi: 10.1126/science.1219831

    14. [14]

      Song, Q. W.; Zhou, Z. H.; He, L. N. Green Chem. 2017, 19, 3707. doi: 10.1039/c7gc00199a  doi: 10.1039/c7gc00199a

    15. [15]

      Saeidi, S.; Najari, S.; Fazlollahi, F.; Nikoo, M. K.; Sefidkon, F.; Klemes, J. J.; Baxter, L. L. Renew. Sust. Energ. Rev. 2017, 80, 1292. doi: 10.1016/j.rser.2017.05.204  doi: 10.1016/j.rser.2017.05.204

    16. [16]

      Dai, W. L.; Luo, S. L.; Yin, S. F.; Au, C. T. Appl. Catal. A-Gen. 2009, 366, 2. doi: 10.1016/j.apcata.2009.06.045  doi: 10.1016/j.apcata.2009.06.045

    17. [17]

      Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191. doi: 10.1016/j.cattod.2009.07.075  doi: 10.1016/j.cattod.2009.07.075

    18. [18]

      Galvis, H. M. T.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Science 2012, 335, 835. doi: 10.1126/science.1215614  doi: 10.1126/science.1215614

    19. [19]

      Ayodele, O. B. J. CO2 Util. 2017, 20, 368. doi: 10.1016/j.jcou.2017.06.015  doi: 10.1016/j.jcou.2017.06.015

    20. [20]

      Prieto, G. ChemSusChem 2017, 10, 1056. doi: 10.1002/cssc.201601591  doi: 10.1002/cssc.201601591

    21. [21]

      Chianelli, R. R.; Lyons, J. E.; Mills, G. A. Catal. Today 1994, 22, 361. doi: 10.1016/0920-5861(94)80110-X  doi: 10.1016/0920-5861(94)80110-X

    22. [22]

      Yang, H. Y.; Zhang, C.; Gao, P.; Wang, H.; Li, X. P.; Zhong, L. S.; Wei, W.; Sun, Y. H. Catal. Sci. Technol. 2017, 7, 4580. doi: 10.1039/c7cy01403a  doi: 10.1039/c7cy01403a

    23. [23]

      Yan, X. C.; Guo, H.; Yang, D. J.; Qiu, S. L.; Yao, X. D. Curr. Org. Chem. 2014, 18, 1335. doi: 10.2174/1385272819666140424212948  doi: 10.2174/1385272819666140424212948

    24. [24]

      Centi, G.; Iaquaniello, G.; Perathoner, S. ChemSusChem 2011, 4, 1265. doi: 10.1002/cssc.201100313  doi: 10.1002/cssc.201100313

    25. [25]

      Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804. doi: 10.1021/acs.chemrev.6b00816  doi: 10.1021/acs.chemrev.6b00816

    26. [26]

      Goeppert, A.; Czaun, M.; Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Chem. Soc. Rev. 2014, 43, 7995. doi: 10.1039/c4cs00122b  doi: 10.1039/c4cs00122b

    27. [27]

      Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/c1cs15008a  doi: 10.1039/c1cs15008a

    28. [28]

      Pour, A. N.; Karimi, J.; Housaindokht, M.; Hashemian, M. React. Kinet. Mech. Cat. 2017, 122, 605. doi: 10.1007/s11144-017-1242-7  doi: 10.1007/s11144-017-1242-7

    29. [29]

      Riedel, T.; Schaub, G.; Jun, K. W.; Lee, K. W. Ind. Eng. Chem. Res. 2001, 40, 1355. doi: 10.1021/Ie000084k  doi: 10.1021/Ie000084k

    30. [30]

      Rodemerck, U.; Holena, M.; Wagner, E.; Smejkal, Q.; Barkschat, A.; Baerns, M. ChemCatChem 2013, 5, 1948. doi: 10.1002/cctc.201200879  doi: 10.1002/cctc.201200879

    31. [31]

      Torrente-Murciano, L.; Mattia, D.; Jones, M. D.; Plucinski, P. K. J. CO2 Util. 2014, 6, 34. doi: 10.1016/j.jcou.2014.03.002  doi: 10.1016/j.jcou.2014.03.002

    32. [32]

      Liang, B. L.; Duan, H. M.; Hou, B. L.; Su, X.; Huang, Y. Q.; Wang, A. Q.; Wang, X. D.; Zhang, T. Chem. Ind. Eng. Prog. 2015, 34, 3746. doi: 10.16085/j.issn.1000-6613.2015.10.035  doi: 10.16085/j.issn.1000-6613.2015.10.035

    33. [33]

      Kim, S. S.; Lee, H. H.; Hong, S. C. Appl. Catal. A-Gen. 2012, 423, 100. doi: 10.1016/j.apcata.2012.02.021  doi: 10.1016/j.apcata.2012.02.021

    34. [34]

      Wang, L. C.; Khazaneh, M. T.; Widmann, D.; Behm, R. J. J. Catal. 2013, 302, 20. doi: 10.1016/j.jcat.2013.02.021  doi: 10.1016/j.jcat.2013.02.021

    35. [35]

      Brady, R. C.; Pettit, R. J. Am. Chem. Soc. 1981, 103, 1287. doi: 10.1002/chin.198125169  doi: 10.1002/chin.198125169

    36. [36]

      Gunasooriya, G. T. K. K.; van Bavel, A. P.; Kuipers, H. P. C. E.; Saeys, M. ACS Catal. 2016, 6, 3660. doi: 10.1021/acscatal.6b00634  doi: 10.1021/acscatal.6b00634

    37. [37]

      Ojeda, M.; Nabar, R.; Nilekar, A. U.; Ishikawa, A.; Mavrikakis, M.; Iglesia, E. J. Catal. 2010, 272, 287. doi: 10.1016/j.jcat.2010.04.012  doi: 10.1016/j.jcat.2010.04.012

    38. [38]

      Schweicher, J.; Bundhoo, A.; Kruse, N. J. Am. Chem. Soc. 2012, 134, 16135. doi: 10.1021/ja3068484  doi: 10.1021/ja3068484

    39. [39]

      Chakrabarti, D.; Gnanamani, M. K.; Shafer, W. D.; Ribeiro, M. C.; Sparks, D. E.; Prasad, V.; de Klerk, A.; Davis, B. H. Ind. Eng. Chem. Res. 2015, 54, 6438. doi: 10.1021/acs.iecr.5b01402  doi: 10.1021/acs.iecr.5b01402

    40. [40]

      Flory, P. J. J. Am. Chem. Soc. 1936, 58, 1877. doi: 10.1021/ja01301a016  doi: 10.1021/ja01301a016

    41. [41]

      Li, Z. L.; Wang, J. J.; Qu, Y. Z.; Liu, H. L.; Tang, C. Z.; Miao, S.; Feng, Z. C.; An, H. Y.; Li, C. ACS Catal. 2017, 7, 8544. doi: 10.1021/acscatal.7b03251  doi: 10.1021/acscatal.7b03251

    42. [42]

      Chang, C. D.; Silvestri, A. J. J. Catal. 1977, 47, 249. doi: 10.1016/0021-9517(77)90172-5  doi: 10.1016/0021-9517(77)90172-5

    43. [43]

      Kusama, H.; Okabe, K.; Sayama, K.; Arakawa, H. Catal. Today 1996, 28, 261. doi: 10.1016/0920-5861(95)00246-4  doi: 10.1016/0920-5861(95)00246-4

    44. [44]

      Yang, Y. Z.; Lin, T. J.; Qi, X. Z.; Yu, F.; An, Y. L.; Li, Z. J.; Dai, Y. Y.; Zhong, L. S.; Wang, H.; Sun, Y. H. Appl. Catal. A-Gen. 2018, 549, 179. doi: 10.1016/j.apcata.2017.09.037  doi: 10.1016/j.apcata.2017.09.037

    45. [45]

      Gnanamani, M. K.; Jacobs, G.; Keogh, R. A.; Shafer, W. D.; Sparks, D. E.; Hopps, S. D.; Thomas, G. A.; Davis, B. H. Appl. Catal. A-Gen. 2015, 499, 39. doi: 10.1016/j.apcata.2015.03.046  doi: 10.1016/j.apcata.2015.03.046

    46. [46]

      Kangvansura, P.; Chew, L. M.; Saengsui, W.; Santawaja, P.; Poo-arporn, Y.; Muhler, M.; Schulz, H.; Worayingyong, A. Catal. Today 2016, 275, 59. doi: 10.1016/j.cattod.2016.02.045  doi: 10.1016/j.cattod.2016.02.045

    47. [47]

      Kurakata, H.; Izumi, Y.; Aika, K. Chem. Commun. 1996, 3, 389. doi: 10.1039/Cc9960000389  doi: 10.1039/Cc9960000389

    48. [48]

      Dorner, R. W.; Hardy, D. R.; Williams, F. W.; Willauer, H. D. Catal. Commun. 2010, 11, 816. doi: 10.1016/j.catcom.2010.02.024  doi: 10.1016/j.catcom.2010.02.024

    49. [49]

      Satthawong, R.; Koizumi, N.; Song, C. S.; Prasassarakich, P. J. CO2 Util. 2013, 3-4, 102. doi: 10.1016/j.jcou.2013.10.002  doi: 10.1016/j.jcou.2013.10.002

    50. [50]

      Ding, F. S.; Zhang, A. F.; Liu, M.; Zuo, Y.; Li, K. Y.; Guo, X. W.; Song, C. S. Ind. Eng. Chem. Res. 2014, 53, 17563. doi: 10.1021/ie5031166  doi: 10.1021/ie5031166

    51. [51]

      Chew, L. M.; Ruland, H.; Schulte, H. J.; Xia, W.; Muhler, M. J. Chem. Sci. 2014, 126, 481. doi: 10.1007/s12039-014-0591-2  doi: 10.1007/s12039-014-0591-2

    52. [52]

      Chew, L. M.; Kangvansura, P.; Ruland, H.; Schulte, H. J.; Somsen, C.; Xia, W.; Eggeler, G.; Worayingyong, A.; Muhler, M. Appl. Catal. A-Gen. 2014, 482, 163. doi: 10.1016/j.apcata.2014.05.037  doi: 10.1016/j.apcata.2014.05.037

    53. [53]

      Owen, R. E.; O'Byrne, J. P.; Mattia, D.; Plucinski, P.; Pascu, S. I.; Jones, M. D. Chem. Commun. 2013, 49, 11683. doi: 10.1039/c3cc46791k  doi: 10.1039/c3cc46791k

    54. [54]

      Ding, F. S.; Zhang, A. F.; Liu, M.; Guo, X. W.; Song, C. S. RSC Adv. 2014, 4, 8930. doi: 10.1039/c3ra44485f  doi: 10.1039/c3ra44485f

    55. [55]

      Al-Dossary, M.; Ismail, A. A.; Fierro, J. L. G.; Bouzid, H.; Al-Sayari, S. A. Appl. Catal. B-Environ. 2015, 165, 651. doi: http://dx.doi.org/10.1016/j.apcatb.2014.10.064  doi: 10.1016/j.apcatb.2014.10.064

    56. [56]

      Choi, Y. H.; Eun, C. R.; Eun, H. K.; Kwang, Y. K.; Youn, J. J.; Kyeong, N. K.; Sun, H. C.; Jang, J. H.; Jae, S. L. ChemSusChem 2017, 10, 1. doi: 10.1002/cssc.201701437  doi: 10.1002/cssc.201701437

    57. [57]

      Xie, T. Z.; Wang, J. Y.; Ding, F. S.; Zhang, A. F.; Li, W. H.; Guo, X. W.; Song, C. S. J. CO2 Util. 2017, 19, 202. doi: 10.1016/j.jcou.2017.03.022  doi: 10.1016/j.jcou.2017.03.022

    58. [58]

      Torrente, M. L.; Chapman, R. S. L.; Narvaez-Dinamarca, A.; Mattia, D.; Jones, M. D. Phys. Chem. Chem. Phys. 2016, 18, 15496. doi: 10.1039/c5cp07788e  doi: 10.1039/c5cp07788e

    59. [59]

      Shi, Z. B.; Yang, H. Y.; Gao, P.; Li, X. P.; Zhong, L. S.; Wang, H.; Liu, H. J.; Wei, W.; Sun, Y. H. Catal. Today 2017, doi: 10.1016/j.cattod.2017.09.053  doi: 10.1016/j.cattod.2017.09.053

    60. [60]

      Owen, R. E.; Plucinski, P.; Mattia, D.; Torrente-Murciano, L.; Ting, V. P.; Jones, M. D. J. CO2 Util. 2016, 16, 97. doi: 10.1016/j.jcou.2016.06.009  doi: 10.1016/j.jcou.2016.06.009

    61. [61]

      Rafati, M.; Wang, L. J.; Shahbazi, A. J. CO2 Util. 2015, 12, 34. doi: 10.1016/j.jcou.2015.10.002  doi: 10.1016/j.jcou.2015.10.002

    62. [62]

      Xu, W. Q.; Ramirez, P. J.; Stacchiola, D.; Brito, J. L.; Rodriguez, J. A. Catal. Lett. 2015, 145, 1365. doi: 10.1007/s10562-015-1540-5  doi: 10.1007/s10562-015-1540-5

    63. [63]

      Albrecht, M.; Rodemerck, U.; Schneider, M.; Broring, M.; Baabe, D.; Kondratenko, E. V. Appl. Catal. B-Environ. 2017, 204, 119. doi: 10.1016/j.apcatb.2016.11.017  doi: 10.1016/j.apcatb.2016.11.017

    64. [64]

      Choi, Y. H.; Jang, Y. J.; Park, H.; Kim, W. Y.; Lee, Y. H.; Choi, S. H.; Lee, J. S. Appl. Catal. B-Environ. 2017, 202, 605. doi: 10.1016/j.apcatb.2016.09.072  doi: 10.1016/j.apcatb.2016.09.072

    65. [65]

      Riedel, T.; Schaub, G.; Jun, K. W.; Lee, K. W. Ind. Eng. Chem. Res. 2001, 40, 1355. doi: 10.1021/Ie000084k  doi: 10.1021/Ie000084k

    66. [66]

      Li, W. H.; Zhang, A.; Jiang, X.; Janik, M. J.; Qiu, J.; Liu, Z. M.; Guo, X. W.; Song, C. S. J. CO2 Util. 2017, 23, 219. doi: 10.1016/j.jcou.2017.07.005  doi: 10.1016/j.jcou.2017.07.005

    67. [67]

      Liu, J.; Zhang, A.; Liu, M.; Hu, S.; Ding, F.; Song, C.; Guo, X. J. CO2 Util. 2017, 21, 100. doi: 10.1016/j.jcou.2017.06.011  doi: 10.1016/j.jcou.2017.06.011

    68. [68]

      Samanta, A.; Landau, M. V.; Vidruk-Nehemya, R.; Herskowitz, M. Catal. Sci. Technol. 2017, 7, 4048. doi: 10.1039/c7cy01118k  doi: 10.1039/c7cy01118k

    69. [69]

      Wang, X. X.; Yang, G. H.; Zhang, J. F.; Chen, S. Y.; Wu, Y. Q.; Zhang, Q. D.; Wang, J. W.; Han, Y. Z.; Tan, Y. S. Chem. Commun. 2016, 52, 7352. doi: 10.1039/c6cc01965j  doi: 10.1039/c6cc01965j

    70. [70]

      Fujiwara, M.; Sakurai, H.; Shiokawa, K.; Iizuka, Y. Catal. Today 2015, 242, 255. doi: 10.1016/j.cattod.2014.04.032  doi: 10.1016/j.cattod.2014.04.032

    71. [71]

      Gao, P.; Li, S. G.; Bu, X. N.; Dang, S. S.; Liu, Z. Y.; Wang, H.; Zhong, L. S.; Qiu, M. H.; Yang, C. G.; Cai, J.; Wei, W.; Sun, Y. H. Nat. Chem. 2017, 9, 1019. doi: 10.1038/Nchem.2794  doi: 10.1038/Nchem.2794

    72. [72]

      Mark, E. D.; Burtron, H. D. Appl. Catal. A-Gen. 1996, 138, 319. doi: 10.1016/0926-860X(95)00306-1  doi: 10.1016/0926-860X(95)00306-1

    73. [73]

      Landau, M. V.; Meiri, N.; Utsis, N.; Nehemya, R. V.; Herskowitz, M. Ind. Eng. Chem. Res. 2017, 56, 13335. doi: 10.1021/acs.iecr.7b01817  doi: 10.1021/acs.iecr.7b01817

    74. [74]

      Gnanamani, M. K.; Jacobs, G.; Hamdeh, H. H.; Shafer, W. D.; Davis, B. H. Catal. Today 2013, 207, 50. doi: 10.1016/j.cattod.2012.02.059  doi: 10.1016/j.cattod.2012.02.059

    75. [75]

      Kishan, G.; Lee, M. W.; Nam, S. S.; Choi, M. J.; Lee, K. W. Catal. Lett. 1998, 56, 215. doi: 10.1023/A:1019089919614  doi: 10.1023/A:1019089919614

    76. [76]

      Li, S. G.; Guo, H. J.; Luo, C. R.; Zhang, H. R.; Xiong, L.; Chen, X. D.; Ma, L. L. Catal. Lett. 2013, 143, 345. doi: 10.1007/s10562-013-0977-7  doi: 10.1007/s10562-013-0977-7

    77. [77]

      Yan, S. R.; Jun, K. W.; Hong, J. S.; Choi, M. J.; Lee, K. W. Appl. Catal. A-Gen. 2000, 194, 63. doi: 10.1016/S0926-860X(99)00354-3  doi: 10.1016/S0926-860X(99)00354-3

    78. [78]

      Visconti, C. G.; Martinelli, M.; Falbo, L.; Fratalocchi, L.; Lietti, L. Catal. Today 2016, 277, 161. doi: 10.1016/j.cattod.2016.04.010  doi: 10.1016/j.cattod.2016.04.010

    79. [79]

      Ngantsoue, H. W.; Zhang, Y. Q.; O'Brien, R. J.; Luo, M. S.; Davis, B. H. Appl. Catal. A-Gen. 2002, 236, 77. doi: 10.1016/S0926-860x(02)00278-8  doi: 10.1016/S0926-860x(02)00278-8

    80. [80]

      Martinelli, M.; Visconti, C. G.; Lietti, L.; Forzatti, P.; Bassano, C.; Deiana, P. Catal. Today 2014, 228, 77. doi: 10.1016/j.cattod.2013.11.018  doi: 10.1016/j.cattod.2013.11.018

    81. [81]

      Satthawong, R.; Koizumi, N.; Song, C. S.; Prasassarakich, P. Top Catal. 2014, 57, 588. doi: 10.1007/s11244-013-0215-y  doi: 10.1007/s11244-013-0215-y

    82. [82]

      Li, J. W.; Ding, Y. J.; Li, X. M.; Jiao, G. P.; Wang, T.; Chen, W. M.; Luo, H. Y. Chem. Commun. 2008, 45, 5954. doi: 10.1039/b813641f  doi: 10.1039/b813641f

    83. [83]

      Chun, D. H.; Park, J. C.; Hong, S. Y.; Lim, J. T.; Kim, C. S.; Lee, H. T.; Yang, J. I.; Hong, S.; Jung, H. J. Catal. 2014, 317, 135. doi: 10.1016/j.jcat.2014.06.014  doi: 10.1016/j.jcat.2014.06.014

    84. [84]

      Willauer, H. D.; Ananth, R.; Olsen, M. T.; Drab, D. M.; Hardy, D. R.; Williams, F. W. J. CO2 Util. 2013, 3-4, 56. doi: 10.1016/j.jcou.2013.10.003  doi: 10.1016/j.jcou.2013.10.003

    85. [85]

      Foraita, S.; Fulton, J. L.; Chase, Z. A.; Vjunov, A.; Xu, P. H.; Barath, E.; Camaioni, D. M.; Zhao, C.; Lercher, J. A. Chem-Eur. J. 2015, 21, 2423. doi: 10.1002/chem.201405312  doi: 10.1002/chem.201405312

    86. [86]

      Kiatphuengporn, S.; Jantaratana, P.; Limtrakul, J.; Chareonpanich, M. Chem. Eng. J. 2016, 306, 866. doi: 10.1016/j.cej.2016.08.029  doi: 10.1016/j.cej.2016.08.029

    87. [87]

      Minett, D. R.; O'Byrne, J. P.; Pascu, S. I.; Plucinski, P. K.; Owen, R. E.; Jones, M. D.; Mattia, D. Catal. Sci. Technol. 2014, 4, 3351. doi: 10.1039/c4cy00616j  doi: 10.1039/c4cy00616j

    88. [88]

      Zhong, L. S.; Yu, F.; An, Y. L.; Zhao, Y. H.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y.; et al. Nature 2016, 538, 84. doi: 10.1038/nature19786  doi: 10.1038/nature19786

    89. [89]

      Zhang, Y. Q.; Gary, J.; Dennis, E. S.; Mark, E. D.; Burtron, H. D. Catal. Today 2002, 71, 411. doi: 10.1016/S0920-5861(01)00468-0  doi: 10.1016/S0920-5861(01)00468-0

    90. [90]

      Thomas, R.; Michael, C.; Hans, S.; Georg, S.; Sang, S. N.; Jun, K. W.; Choi, M. J.; Gurram, K.; Lee, K. W. Appl. Catal. A-Gen. 1999, 186, 201. doi: 10.1016/S0926-860X(99)00173-8  doi: 10.1016/S0926-860X(99)00173-8

    91. [91]

      Mattia, D.; Jones, M. D.; P., J.; Griffiths, O. G.; Owen, R. E.; Sackville, E.; Mcmanus, M. ChemSusChem 2015, 8, 4064. doi: 10.1002/cssc.201500739  doi: 10.1002/cssc.201500739

    92. [92]

      Chakrabarti, D.; de Klerk, A.; Prasad, V.; Gnanamani, M. K.; Shafer, W. D.; Jacobs, G.; Sparks, D. E.; Davis, B. H. Ind. Eng. Chem. Res. 2015, 54, 1189. doi:10.1021/ie503496m  doi: 10.1021/ie503496m

    93. [93]

      Li, C. M.; Ban, H. Y.; Cai, W. J.; Zhang, Y.; Li, Z.; Fujimoto, K. J. Saudi. Chem. Soc. 2017, 21, 974. doi: 10.1016/j.jscs.2017.05.003  doi: 10.1016/j.jscs.2017.05.003

    94. [94]

      Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    95. [95]

      Li, M. M. J.; Zeng, Z. Y.; Liao, F. L.; Hong, X. L.; Tsang, S. C. E. J. Catal. 2016, 343, 157. doi: 10.1016/j.jcat.2016.03.020  doi: 10.1016/j.jcat.2016.03.020

    96. [96]

      Larmier, K.; Liao, W. C.; Tada, S.; Lam, E.; Verel, R.; Bansode, A.; Urakawa, A.; Comas-Vives, A.; Coperet, C. Angew. Chem. Int. Edit. 2017, 56, 2318. doi: 10.1002/anie.201610166  doi: 10.1002/anie.201610166

    97. [97]

      Liao, F. L.; Wu, X. P.; Zheng, J. W.; Li, M. M. J.; Kroner, A.; Zeng, Z. Y.; Hong, X. L.; Yuan, Y. Z.; Gong, X. Q.; Tsang, S. C. E. Green Chem. 2017, 19, 270. doi: 10.1039/c6gc02366e  doi: 10.1039/c6gc02366e

    98. [98]

      Bai, S. X.; Shao, Q.; Feng, Y. G.; Bu, L. Z.; Huang, X. Q. Small 2017, 13, 1604311. doi: 10.1002/Smll.201604311  doi: 10.1002/Smll.201604311

    99. [99]

      Posada-Perez, S.; Ramirez, P. J.; Evans, J.; Vines, F.; Liu, P.; Illas, F.; Rodriguez, J. A. J. Am. Chem. Soc. 2016, 138, 8269. doi: 10.1021/jacs.6b04529  doi: 10.1021/jacs.6b04529

    100. [100]

      Tada, S.; Watanabe, F.; Kiyota, K.; Shimoda, N.; Hayashi, R.; Takahashi, M.; Nariyuki, A.; Igarashi, A.; Satokawa, S. J. Catal. 2017, 351, 107. doi: 10.1016/j.jcat.2017.04.021  doi: 10.1016/j.jcat.2017.04.021

    101. [101]

      Fujiwara, M.; Satake, T.; Shiokawa, K.; Sakurai, H. Appl. Catal. B-Environ. 2015, 179, 37. doi: 10.1016/j.apcatb.2015.05.004  doi: 10.1016/j.apcatb.2015.05.004

    102. [102]

      Saeidi, S.; Amin, N. S.; Rahimpour, M. R. J. CO2 Util. 2014, 5, 66. doi: 10.1016/j.jcou.2013.12.005  doi: 10.1016/j.jcou.2013.12.005

    103. [103]

      Wang, J. J.; You, Z. Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. Catal. Today 2013, 215, 186. doi: 10.1016/j.cattod.2013.03.031  doi: 10.1016/j.cattod.2013.03.031

    104. [104]

      Visconti, C. G.; Martinelli, M.; Falbo, L.; Infantes-Molina, A.; Lietti, L.; Forzatti, P.; Iaquaniello, G.; Palo, E.; Picutti, B.; Brignoli, F. Appl. Catal. B-Environ. 2017, 200, 530. doi: 10.1016/j.apcatb.2016.07.047  doi: 10.1016/j.apcatb.2016.07.047

    105. [105]

      Wei, J.; Sun, J.; Wen, Z. Y.; Fang, C. Y.; Ge, Q. J.; Xu, H. Y. Catal. Sci. Technol. 2016, 6, 4786. doi: 10.1039/c6cy00160b  doi: 10.1039/c6cy00160b

    106. [106]

      Owen, R. E.; O'Byrne, J. P.; Mattia, D.; Plucinski, P.; Pascu, S. I.; Jones, M. D. ChemPlusChem 2013, 78, 1536. doi: 10.1002/cplu.201300263  doi: 10.1002/cplu.201300263

    107. [107]

      Wang, C. X.; Wang, X. B. Adv. Mater. Res-Switz 2012, 347-353, 808. doi: 10.4028/www.scientific.net/AMR.347-353.808  doi: 10.4028/www.scientific.net/AMR.347-353.808

    108. [108]

      Gupta, S.; Jain, V. K.; Jagadeesan, D. ChemNanoMat 2016, 2, 989. doi: 10.1002/cnma.201600234  doi: 10.1002/cnma.201600234

    109. [109]

      Yang, L.; Li, J.; Cao, J. X. Appl. Mech. Mater. 2013, 423-426, 463. doi: 10.4028/www.scientific.net/AMM.423-426.463  doi: 10.4028/www.scientific.net/AMM.423-426.463

    110. [110]

      Hu, S.; Liu, M.; Ding, F. S.; Song, C. S.; Zhang, G. L.; Guo, X. W. J. CO2 Util. 2016, 15, 89. doi: 10.1016/j.jcou.2016.02.009  doi: 10.1016/j.jcou.2016.02.009

    111. [111]

      Gao, J. J.; Jia, C. M.; Liu, B. Catal. Sci. Technol. 2017, 7, 5602. doi: 10.1039/C7CY01549F  doi: 10.1039/C7CY01549F

    112. [112]

      Zhang, J. L.; Lu, S. P.; Su, X. J.; Fan, S. B.; Ma, Q. X.; Zhao, T. S. J. CO2 Util. 2015, 12, 95. doi: 10.1016/j.jcou.2015.05.004  doi: 10.1016/j.jcou.2015.05.004

    113. [113]

      Numpilai, T.; Witoon, T.; Chanlek, N.; Limphirat, W.; Bonura, G.; Chareonpanich, M.; Limtrakul, J. Appl. Catal. A-Gen. 2017, 547, 219. doi:10.1016/j.apcata.2017.09.006  doi: 10.1016/j.apcata.2017.09.006

    114. [114]

      Meiri, N.; Dinburg, Y.; Amoyal, M.; Koukouliev, V.; Nehemya, R. V.; Landau, M. V.; Herskowitz, M. Faraday Discuss. 2015, 183, 197. doi: 10.1039/c5fd00039d  doi: 10.1039/c5fd00039d

    115. [115]

      Satthawong, R.; Koizumi, N.; Song, C. S.; Prasassarakich, P. Catal. Today 2015, 251, 34. doi: 10.1016/j.cattod.2015.01.011  doi: 10.1016/j.cattod.2015.01.011

    116. [116]

      Numpilai, T.; Witoon, T.; Chanlek, N.; Limphirat, W.; Bonura, G.; Chareonpanich, M.; Limtrakul, J. Appl. Catal. A-Gen. 2017, 547, 219. doi: 10.1016/j.apcata.2017.09.006  doi: 10.1016/j.apcata.2017.09.006

    117. [117]

      Van Santen, R. A.; Ciobîcă, I. M.; Van Steen, E.; Ghouri, M. M. Advances in Catalysis; Gates, B. C., Kn zinger, H., Eds.; Elsevier Science & Technology: Salt Lake City, USA, 2011; Vol. 54, p 127.

    118. [118]

      Owen, R. E.; Mattia, D.; Plucinski, P.; Jones, M. D. ChemPhysChem 2017, 18, 3211. doi: 10.1002/cphc.201700422  doi: 10.1002/cphc.201700422

    119. [119]

      Newsome, D. S. Catal. Rev. 2006, 21, 275. doi: 10.1080/03602458008067535  doi: 10.1080/03602458008067535

    120. [120]

      Van, D. L.; Gerard, P.; Beenackers, A. A. C. M. Catal. Rev. 1999, 41, 255. doi: 10.1081/CR-100101170  doi: 10.1081/CR-100101170

    121. [121]

      You, Z. Y.; Deng, W. P.; Zhang, Q. H.; Wang, Y. Chinese J. Catal. 2013, 34, 956. doi: 10.1016/S1872-2067(12)60559-2  doi: 10.1016/S1872-2067(12)60559-2

    122. [122]

      Cheng, K. S.; Ordomsky, V. V.; Legras, B.; Virginie, M.; Paul, S.; Wang, Y.; Khodakov, A. Y. Appl. Catal. A-Gen. 2015, 502, 204. doi: 10.1016/j.apcata.2015.06.010  doi: 10.1016/j.apcata.2015.06.010

    123. [123]

      Ye, J. Y.; Liu, C. J.; Ge, Q. J. Phys. Chem. C 2012, 116, 7817. doi: 10.1021/jp3004773  doi: 10.1021/jp3004773

    124. [124]

      Chen, M.; Xu, J.; Liu, Y. M.; Cao, Y.; He, H. Y.; Zhuang, J. H. Appl. Catal. A-Gen. 2010, 377, 35. doi: 10.1016/j.apcata.2010.01.011  doi: 10.1016/j.apcata.2010.01.011

    125. [125]

      Hu, B. X.; Frueh, S.; Garces, H. F.; Zhang, L. C.; Aindow, M.; Brooks, C.; Kreidler, E.; Suib, S. L. Appl. Catal. B-Environ. 2013, 132, 54. doi: 10.1016/j.apcatb.2012.11.003  doi: 10.1016/j.apcatb.2012.11.003

    126. [126]

      Lee, J. F.; Chern, W. S.; Lee, M. D.; Dong, T. Y. Can. J. Chem. Eng. 1992, 70, 511. doi: 10.1002/cjce.5450700314  doi: 10.1002/cjce.5450700314

    127. [127]

      Dorner, R. W.; Hardy, D. R.; Williams, F. W.; Willauer, H. D. Catal. Commun. 2011, 15, 88. doi: 10.1016/j.catcom.2011.08.017  doi: 10.1016/j.catcom.2011.08.017

    128. [128]

      Prasad, P. S. S.; Bae, J. W.; Jun, K. W.; Lee, K. W. Catal. Surv. Asia 2008, 12, 170. doi: 10.1007/s10563-008-9049-1  doi: 10.1007/s10563-008-9049-1

    129. [129]

      Falbo, L.; Martinelli, M.; Visconti, C. G.; Lietti, L.; Forzatti, P.; Bassano, C.; Deiana, P. Ind. Eng. Chem. Res. 2017, 56, 13147. doi: 10.1021/acs.iecr.7b01494  doi: 10.1021/acs.iecr.7b01494

    130. [130]

      Zhang, J.; Lu, S.; Su, X.; Fan, S.; Ma, Q.; Zhao, T. J. CO2 Util. 2015, 12, 95. doi: 10.1016/j.jcou.2015.05.004  doi: 10.1016/j.jcou.2015.05.004

    131. [131]

      Chen, W.; Fan, Z. L.; Pan, X. L.; Bao, X. H. J. Am. Chem. Soc. 2008, 130, 9414. doi: 10.1021/ja8008192  doi: 10.1021/ja8008192

    132. [132]

      Liu, X. L.; Wang, M. H.; Zhou, C.; Zhou, W.; Cheng, K.; Kang, J. C.; Zhang, Q. H.; Deng, W. P.; Wang, Y. Chem. Commun. 2018, 54, 140. doi: 10.1039/c7cc08642c  doi: 10.1039/c7cc08642c

    133. [133]

      Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 1514. doi: 10.1039/b414039g  doi: 10.1039/b414039g

    134. [134]

      He, Z. H.; Qian, Q. L.; Ma, J.; Meng, Q. L.; Zhou, H. C.; Song, J. L.; Liu, Z. M.; Han, B. X. Angew. Chem.-Int. Edit. 2016, 55, 737. doi: 10.1002/anie.201507585  doi: 10.1002/anie.201507585

    135. [135]

      Chen, Y.; Choi, S. M.; Thompson, L. T. J. Catal. 2016, 343, 147. doi: 10.1016/j.jcat.2016.01.016  doi: 10.1016/j.jcat.2016.01.016

    136. [136]

      Cui, M.; Qian, Q. L.; He, Z. H.; Zhang, Z. F.; Ma, J.; Wu, T. B.; Yang, G. Y.; Han, B. X. Chem. Sci. 2016, 7, 5200. doi: 10.1039/c6sc01314g  doi: 10.1039/c6sc01314g

    137. [137]

      Zhang, J. J.; Qian, Q. L.; Cui, M.; Chen, C. J.; Liu, S. S.; Han, B. X. Green Chem. 2017, 19, 4396. doi: 10.1039/c7gc01887h  doi: 10.1039/c7gc01887h

    138. [138]

      Qian, Q. L.; Cui, M.; Zhang, J. J.; Xiang, J. F.; Song, J. L.; Yang, G. Y.; Han, B. X. Green Chem. 2018, 20, 206. doi: 10.1039/c7gc02807e  doi: 10.1039/c7gc02807e

    139. [139]

      Guo, W.; Gao, W. G.; Wang, H.; Tian, J. J. Sol. Energ. Mat. Sol. C. 2014, 827, 20. doi: 10.4028/www.scientific.net/AMR.827.20  doi: 10.4028/www.scientific.net/AMR.827.20

    140. [140]

      Shang, G. L.; Hu, J. G.; Hai, R. Z.; Jun, L.; Lian, X.; Cai, R. L.; Xin, D. C. Adv. Mater. Res. 2013, 772, 275. doi: 10.4028/www.scientific.net/AMR.772.275  doi: 10.4028/www.scientific.net/AMR.772.275

    141. [141]

      Liu, S.; Zhou, H. B.; Song, Q. Y.; Ma, Z. J. Taiwan Inst. Chem. E. 2017, 76, 18. doi: 10.1016/j.jtice.2017.04.007  doi: 10.1016/j.jtice.2017.04.007

    142. [142]

      Ouyang, B.; Xiong, S. H.; Zhang, Y. H.; Liu, B.; Li, J. L. Appl. Catal. A-Gen. 2017, 543, 189. doi: 10.1016/j.apcata.2017.06.031  doi: 10.1016/j.apcata.2017.06.031

    143. [143]

      Kiatphuengporn, S.; Chareonpanich, M.; Limtrakul, J. Chem. Eng. J. 2014, 240, 527. doi: 10.1016/j.cej.2013.10.090  doi: 10.1016/j.cej.2013.10.090

    144. [144]

      Guo, H. J.; Li, S. G.; Peng, F.; Zhang, H. R.; Xiong, L.; Huang, C.; Wang, C.; Chen, X. D. Catal. Lett. 2015, 145, 620. doi: 10.1007/s10562-014-1446-7  doi: 10.1007/s10562-014-1446-7

    145. [145]

      Okabe, K.; Yamada, H.; Hanaoka, T.; Matsuzaki, T.; Arakawa, H.; Abe, Y. Chem. Lett. 2001, 30, 904. doi: 10.1246/cl.2001.904  doi: 10.1246/cl.2001.904

    146. [146]

      Kusama, H.; Okabe, K.; Sayama, K.; Arakawa, H. Appl. Organomet. Chem. 2000, 12, 836. doi: 10.1002/1099-0739(200012)14:123.0.CO;2-C  doi: 10.1002/1099-0739(200012)14:123.0.CO;2-C

    147. [147]

      Kishida, M.; Yamada, K.; Nagata, H.; Wakabayashi, K. Chem. Lett. 1994, 23, 555. doi: 10.1246/cl.1994.555  doi: 10.1246/cl.1994.555

    148. [148]

      Inui, T.; Yamamoto, T.; Inoue, M.; Hara, H.; Takeguchi, T.; Kim, J. B. Appl. Catal. A-Gen. 1999, 186, 395. doi: 10.1016/S0926-860X(99)00157-X  doi: 10.1016/S0926-860X(99)00157-X

  • 加载中
    1. [1]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    2. [2]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    6. [6]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    7. [7]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    8. [8]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    9. [9]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    10. [10]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    11. [11]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

Metrics
  • PDF Downloads(16)
  • Abstract views(390)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return