Citation: XI Jinyang, NAKAMURA Yuma, ZHAO Tianqi, WANG Dong, SHUAI Zhigang. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 961-976. doi: 10.3866/PKU.WHXB201802051 shu

Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems

  • Corresponding author: SHUAI Zhigang, zgshuai@tsinghua.edu.cn
  • Received Date: 3 January 2018
    Revised Date: 29 January 2018
    Accepted Date: 29 January 2018
    Available Online: 5 June 2018

    Fund Project: the Shanghai Sailing Program, China 17YF1427900The project was supported by the National Natural Science Foundation of China (21703136), the National Key Research and Development Program of China (2017YFA0204501) and the Shanghai Sailing Program, China (17YF1427900)the National Natural Science Foundation of China 21703136the National Key Research and Development Program of China 2017YFA0204501

  • The electronic structures, deformation potential, electron-phonon couplings (EPCs), and intrinsic charge transport of layered systems — the sp +sp2 hybridized carbon allotropes, graphynes (GYs) and graphdiynes (GDYs), as well as sp2 + sp3 hybridized structure with buckling, such as stanine — have been investigated theoretically. Computational studies showed that, similar to graphene, some GYs can possess Dirac cones (such as α-, β-, and 6, 6, 12-GYs), and that the electronic properties of GYs and GDYs can be tuned by cutting into nanoribbons with different widths and edge morphologies. Focusing on the features of Dirac cones, band structure engineering can provide a clue for tuning electronic transport in 2D carbon-based materials. Based on the Boltzmann transport equation and the deformation potential approximation (DPA), the charge carrier mobilities in GYs and GDYs were predicted to be as high as 104–105 cm2·V-1·s-1 at room temperature. Interestingly, due to lower EPC strength and longer relaxation time, the charge carrier mobility in 6, 6, 12-GY with double Dirac cones structure was found to be even larger than that of graphene at room temperature. The unique electronic properties and high mobilities of GYs and GDYs make them highly promising candidates for applications in next generation nanoelectronics. Additionally, through the full evaluation of the EPC by density functional perturbation theory (DFPT) and Wannier interpolation, the EPCs with different phonon branches and wave-vectors as well as charge carrier mobilities for graphene, GYs and stanene have been discussed. This showed that the longitudinal acoustic (LA) phonon scattering in the long wavelength limit is the main scattering mechanism for GYs and graphene, and thus the DPA is applicable. Due to stronger LA phonon scattering, the electron mobilities (∼104 cm2·V-1·s-1) of α-GYs and γ-GYs were predicted to be one order of magnitude smaller than that of graphene at room temperature by full evaluation of the EPC. However, the DPA would fail if there was buckling in the honeycomb structure and the planar symmetry was broken (absence of σh), such as in stanene, where the inter-valley scatterings from the out-of-plane acoustic (ZA) and transverse acoustic (TA) phonons dominate the carrier transport process and limit the electron mobilities to be (2–3) × 103 cm2·V-1·s-1 at room temperature. In addition to our calculations, others have also found that the main scattering mechanisms in layered systems with buckling, such as silicene and germanene, are ZA and TA phonons. Thus, these results give us new insights into the role of EPCs and the limitation of the DPA for carrier transport in layered systems. They also indicate that the carrier mobilities of systems without σh-symmetry can be improved by suppressing the out-of-plane vibrations, for example by clamping by a substrate.
  • 加载中
    1. [1]

      Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354. doi: 10.1038/347354a0  doi: 10.1038/347354a0

    2. [2]

      Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0  doi: 10.1038/354056a0

    3. [3]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    4. [4]

      Taylor, R.; Walton, D. R. M. Nature 1993, 363, 685. doi: 10.1038/363685a0  doi: 10.1038/363685a0

    5. [5]

      Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature 1998, 394, 52. doi: 10.1038/27873  doi: 10.1038/27873

    6. [6]

      Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877  doi: 10.1126/science.1158877

    7. [7]

      Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687. doi: 10.1063/1.453405  doi: 10.1063/1.453405

    8. [8]

      Haley, M. M. Pure Appl. Chem. 2008, 80, 519. doi: 10.1351/pac200880030519  doi: 10.1351/pac200880030519

    9. [9]

      Coluci, V. R.; Galvão, D. S.; Baughman, R. H. J. Chem. Phys. 2004, 121, 3228. doi: 10.1063/1.1772756  doi: 10.1063/1.1772756

    10. [10]

      Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem. Int. Ed. 1997, 36, 836. doi: 10.1002/anie.199708361  doi: 10.1002/anie.199708361

    11. [11]

      Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 1998, 58, 11009. doi: 10.1103/PhysRevB.58.11009  doi: 10.1103/PhysRevB.58.11009

    12. [12]

      Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 46, 3256. doi: 10.1039/b922733d  doi: 10.1039/b922733d

    13. [13]

      Qian, X.; Ning, Z.; Li, Y.; Liu, H.; Ouyang, C.; Chen, Q.; Li, Y. Dalton Trans. 2012, 41, 730. doi: 10.1039/c1dt11641j  doi: 10.1039/c1dt11641j

    14. [14]

      Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572. doi: 10.1039/c3cs60388a  doi: 10.1039/c3cs60388a

    15. [15]

      Huang, C. S.; Li, Y. L. Acta Phys.-Chim. Sin. 2016, 32, 1314.  doi: 10.3866/PKU.WHXB201605035
       

    16. [16]

      Luo, G.; Qian, X.; Liu, H.; Qin, R.; Zhou, J.; Li, L.; Gao, Z.; Wang, E.; Mei, W.-N.; Lu, J.; Li, Y.; Nagase, S. Phys. Rev. B 2011, 84, 075439. doi: 10.1103/PhysRevB.84.075439  doi: 10.1103/PhysRevB.84.075439

    17. [17]

      Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. ACS Nano 2011, 5, 2593. doi: 10.1021/nn102472s  doi: 10.1021/nn102472s

    18. [18]

      Jiao, Y.; Du, A.; Hankel, M.; Zhu, Z.; Rudolph, V.; Smith, S. C. Chem. Commun. 2011, 47, 11843. doi: 10.1039/c1cc15129k  doi: 10.1039/c1cc15129k

    19. [19]

      Enyashin, A. N.; Ivanovskii, A. L. Phys. Status Solidi B 2011, 248, 1879. doi: 10.1002/pssb.201046583  doi: 10.1002/pssb.201046583

    20. [20]

      Malko, D.; Neiss, C.; Viñes, F.; G rling, A. Phys. Rev. Lett. 2012, 108, 086804. doi: 10.1103/PhysRevLett.108.086804  doi: 10.1103/PhysRevLett.108.086804

    21. [21]

      Chen, J. M.; Xi, J. Y.; Wang, D.; Shuai, Z. G. J. Phys. Chem. Lett. 2013, 4, 1443. doi: 10.1021/jz4005587  doi: 10.1021/jz4005587

    22. [22]

      Cui, H. J.; Sheng, X. L.; Yan, Q. B.; Zheng, Q. R.; Su, G. Phys. Chem. Chem. Phys. 2013, 15, 8179. doi: 10.1039/c3cp44457k  doi: 10.1039/c3cp44457k

    23. [23]

      Yue, Q.; Chang, S.; Kang, J.; Qin, S.; Li, J. J. Phys. Chem. C 2013, 117, 14804. doi: 10.1021/jp4021189  doi: 10.1021/jp4021189

    24. [24]

      Pan, L. D.; Zhang, L. Z.; Song, B. Q.; Du, S. X.; Gao, H. J. Appl. Phys. Lett. 2011, 98, 173102. doi: 10.1063/1.3583507  doi: 10.1063/1.3583507

    25. [25]

      Bai, H.; Zhu, Y.; Qiao, W.; Huang, Y. RSC Adv. 2011, 1, 768. doi: 10.1039/c1ra00481f  doi: 10.1039/c1ra00481f

    26. [26]

      Kang, J.; Wu, F.; Li, J. J. Phys.: Condensed Matter 2012, 24, 165301. doi: 10.1088/0953-8984/24/16/165301  doi: 10.1088/0953-8984/24/16/165301

    27. [27]

      Zheng, Q.; Luo, G.; Liu, Q.; Quhe, R.; Zheng, J.; Tang, K.; Gao, Z.; Nagase, S.; Lu, J. Nanoscale 2012, 4, 3990. doi:10.1039/c2nr12026g  doi: 10.1039/c2nr12026g

    28. [28]

      Leenaerts, O.; Partoens, B.; Peeters, F. M. Appl. Phys. Lett. 2013, 103, 013105. doi: 10.1063/1.4812977  doi: 10.1063/1.4812977

    29. [29]

      Xi, J. Y.; Long, M. Q.; Tang, L.; Wang, D.; Shuai, Z. G. Nanoscale 2012, 4, 4348. doi: 10.1039/c2nr30585b  doi: 10.1039/c2nr30585b

    30. [30]

      Xi, J. Y.; Wang, D.; Yi, Y. P.; Shuai, Z. G. J. Chem. Phys. 2014, 141, 034704. doi: 10.1063/1.4887538  doi: 10.1063/1.4887538

    31. [31]

      Xi, J. Y.; Wang, D.; Shuai, Z. G. WIRES: Comput. Mol. Sci. 2015, 5, 215. doi: 10.1002/wcms.1213  doi: 10.1002/wcms.1213

    32. [32]

      Ivanovskii, A. L. Prog. Solid State Chem. 2013, 41, 1. doi: 10.1016/j.progsolidstchem.2012.12.001  doi: 10.1016/j.progsolidstchem.2012.12.001

    33. [33]

      Peng, Q.; Dearden, A. K.; Crean, J.; Han, L.; Liu, S.; Wen, X.; De, S. Nanotechnol., Sci. Appl. 2014, 7, 1. doi: 10.2147/nsa.s40324  doi: 10.2147/nsa.s40324

    34. [34]

      Nakamura, Y.; Zhao, T. Q.; Xi, J. Y.; Shi, W.; Wang, D.; Shuai, Z. G. Adv. Electron. Mater. 2017, 3, 1700143. doi: 10.1002/aelm.201700143  doi: 10.1002/aelm.201700143

    35. [35]

      Bardeen, J.; Shockley, W. Phys. Rev. 1950, 80, 72. doi: 10.1103/PhysRev.80.72  doi: 10.1103/PhysRev.80.72

    36. [36]

      Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515. doi: 10.1103/RevModPhys.73.515  doi: 10.1103/RevModPhys.73.515

    37. [37]

      Giustino, F.; Cohen, M. L.; Louie, S. G. Phys. Rev. B 2007, 76, 165108. doi: 10.1103/PhysRevB.76.165108  doi: 10.1103/PhysRevB.76.165108

    38. [38]

      Noffsinger, J.; Giustino, F.; Malone, B. D.; Park, C.-H.; Louie, S. G.; Cohen, M. L. Comput. Phys. Commun. 2010, 181, 2140. doi: 10.1016/j.cpc.2010.08.027  doi: 10.1016/j.cpc.2010.08.027

    39. [39]

      Dinadayalane, T. C.; Leszczynski, J. Struct. Chem. 2010, 21, 1155. doi: 10.1007/s11224-010-9670-2  doi: 10.1007/s11224-010-9670-2

    40. [40]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132. doi: 10.1021/cr900070d  doi: 10.1021/cr900070d

    41. [41]

      Fuhrer, M. S.; Lau, C. N.; MacDonald, A. H. MRS Bull. 2010, 35, 289. doi: 10.1557/mrs2010.551  doi: 10.1557/mrs2010.551

    42. [42]

      Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951. doi: 10.1021/jp212181h  doi: 10.1021/jp212181h

    43. [43]

      Long, M. Q.; Tang, L.; Wang, D.; Wang, L. J.; Shuai, Z. G. J. Am. Chem. Soc. 2009, 131, 17728. doi: 10.1021/ja907528a  doi: 10.1021/ja907528a

    44. [44]

      Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J. C.; Terrones, H. Nano Today 2010, 5, 351. doi: 10.1016/j.nantod.2010.06.010  doi: 10.1016/j.nantod.2010.06.010

    45. [45]

      Son, Y. W.; Cohen, M. L.; Louie, S. G. Nature 2006, 444, 347. doi: 10.1038/nature05180  doi: 10.1038/nature05180

    46. [46]

      Yue, Q.; Chang, S.; Kang, J.; Tan, J.; Qin, S.; Li, J. J. Chem. Phys. 2012, 136, 244702. doi: 10.1063/1.4730325  doi: 10.1063/1.4730325

    47. [47]

      Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Rev. Mod. Phys. 2011, 83, 407. doi: 10.1103/RevModPhys.83.407  doi: 10.1103/RevModPhys.83.407

    48. [48]

      Wang, L. J.; Nan, G. J.; Yang, X. D.; Peng, Q.; Li, Q. K.; Shuai, Z. G. Chem. Soc. Rev. 2010, 39, 423. doi: 10.1039/b816406c  doi: 10.1039/b816406c

    49. [49]

      Shuai, Z. G.; Geng, H.; Xu, W.; Liao, Y.; Andre, J. M. Chem. Soc. Rev. 2014, 43, 2662. doi: 10.1039/c3cs60319a  doi: 10.1039/c3cs60319a

    50. [50]

      Shuai, Z. G.; Wang, L. J.; Li, Q. K. Adv. Mater. 2011, 23, 1145. doi: 10.1002/adma.201003503  doi: 10.1002/adma.201003503

    51. [51]

      Ziman, J. M. Principles of the Theory of Solids. Cambridge University: London, 1972.
       

    52. [52]

      Grimvall, G. The Electron-Phonon Interaction in Metals, Selected Topics in Solid State Physics. North-Holland: Amsterdam, 1981.

    53. [53]

      Northrup, J. E. Applied Physics Letters 2011, 99, 062111. doi: 10.1063/1.3624588  doi: 10.1063/1.3624588

    54. [54]

      Tang, L.; Long, M. Q.; Wang, D.; Shuai, Z. G. Sci. China Ser. B: Chem. 2009, 52, 1646. doi: 10.1007/s11426-009-0244-3  doi: 10.1007/s11426-009-0244-3

    55. [55]

      Shi, W.; Chen, J. M.; Xi, J. Y.; Wang, D.; Shuai, Z. G. Chem. Mater. 2014, 26, 2669. doi: 10.1021/cm500429w  doi: 10.1021/cm500429w

    56. [56]

      Shi, W.; Zhao, T. Q.; Xi, J. Y.; Wang, D.; Shuai, Z. G. J. Am. Chem. Soc. 2015, 137, 12929. doi: 10.1021/jacs.5b06584  doi: 10.1021/jacs.5b06584

    57. [57]

      Zhao, T. Q.; Shi, W.; Xi, J. Y.; Wang, D.; Shuai, Z. G. Sci. Rep. 2016, 6, 19968. doi: 10.1038/srep19968  doi: 10.1038/srep19968

    58. [58]

      Zhao, T. Q.; Wang, D.; Shuai, Z. G. Synth. Met. 2017, 225, 108. doi: 10.1016/j.synthmet.2017.01.003  doi: 10.1016/j.synthmet.2017.01.003

    59. [59]

      Beleznay, F. B.; Bogár, F.; Ladik, J. J. Chem. Phys. 2003, 119, 5690. doi: 10.1063/1.1595634  doi: 10.1063/1.1595634

    60. [60]

      Giustino, F. Rev. Mod. Phys. 2017, 89, 015003. doi: 10.1103/RevModPhys.89.015003  doi: 10.1103/RevModPhys.89.015003

    61. [61]

      Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D. Rev. Mod. Phys. 2012, 84, 1419. doi: 10.1103/RevModPhys.84.1419  doi: 10.1103/RevModPhys.84.1419

    62. [62]

      Ferry, D. K. Semiconductor Transport. Taylor and Francis: New York, 2000.
       

    63. [63]

      Borysenko, K. M.; Mullen, J. T.; Barry, E. A.; Paul, S.; Semenov, Y. G.; Zavada, J. M.; Nardelli, M. B.; Kim, K. W. Phys. Rev. B 2010, 81, 121412. doi: 10.1103/PhysRevB.81.121412  doi: 10.1103/PhysRevB.81.121412

    64. [64]

      Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phys. Rev. B 2012, 85, 165440. doi: 10.1103/PhysRevB.85.165440  doi: 10.1103/PhysRevB.85.165440

    65. [65]

      Borysenko, K. M.; Mullen, J. T.; Li, X.; Semenov, Y. G.; Zavada, J. M.; Nardelli, M. B.; Kim, K. W. Phys. Rev. B 2011, 83, 161402. doi: 10.1103/PhysRevB.83.161402  doi: 10.1103/PhysRevB.83.161402

    66. [66]

      Li, X.; Mullen, J. T.; Jin, Z.; Borysenko, K. M.; Buongiorno Nardelli, M.; Kim, K. W. Phys. Rev. B 2013, 87, 115418. doi: 10.1103/PhysRevB.87.115418  doi: 10.1103/PhysRevB.87.115418

    67. [67]

      Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phys. Rev. B 2012, 85, 115317. doi: 10.1103/PhysRevB.85.115317  doi: 10.1103/PhysRevB.85.115317

    68. [68]

      Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P. Phys. Rev. Lett. 2008, 101, 096802. doi: 10.1103/PhysRevLett.101.096802  doi: 10.1103/PhysRevLett.101.096802

    69. [69]

      Hong, X.; Posadas, A.; Zou, K.; Ahn, C. H.; Zhu, J. Phys. Rev. Lett. 2009, 102, 136808. doi: 10.1103/PhysRevLett.102.136808  doi: 10.1103/PhysRevLett.102.136808

    70. [70]

      Chen, J. H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S. Solid State Commun. 2009, 149, 1080. doi: 10.1016/j.ssc.2009.02.042  doi: 10.1016/j.ssc.2009.02.042

    71. [71]

      Xu, Y.; Yan, B.; Zhang, H.-J.; Wang, J.; Xu, G.; Tang, P.; Duan, W.; Zhang, S.-C. Phys. Rev. Lett. 2013, 111, 136804. doi: 10.1103/PhysRevLett.111.136804  doi: 10.1103/PhysRevLett.111.136804

    72. [72]

      Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Nat. Mater. 2015, 14, 1020. doi: 10.1038/nmat4384  doi: 10.1038/nmat4384

    73. [73]

      Qi, X. L.; Zhang, S. C. Rev. Mod. Phys. 2011, 83, 1057. doi: 10.1103/RevModPhys.83.1057  doi: 10.1103/RevModPhys.83.1057

    74. [74]

      Mermin, N. D.; Wagner, H. Phys. Rev. Lett. 1966, 17, 1133. doi: 10.1103/PhysRevLett.17.1133  doi: 10.1103/PhysRevLett.17.1133

    75. [75]

      Fischetti, M. V.; Vandenberghe, W. G. Phys. Rev. B 2016, 93, 155413. doi: 10.1103/PhysRevB.93.155413  doi: 10.1103/PhysRevB.93.155413

    76. [76]

      Gaddemane, G.; Vandenberghe, W. G.; Fischetti, M. V. In Simulation of Semiconductor Processes and Devices (SISPAD), IEEE: Nuremberg, Germany, 2016; pp. 353.
       

    77. [77]

      Gunst, T.; Markussen, T.; Stokbro, K.; Brandbyge, M. Phys. Rev. B 2016, 93, 035414. doi: 10.1103/PhysRevB.93.035414  doi: 10.1103/PhysRevB.93.035414

    78. [78]

      Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Small 2015, 11, 640. doi: 10.1002/smll.201402041  doi: 10.1002/smll.201402041

    79. [79]

      Lars, M.; Olivia, P.; Friedhelm, B. J. Phys.: Condens. Mat. 2013, 25, 395305. doi:10.1088/0953-8984/25/39/395305  doi: 10.1088/0953-8984/25/39/395305

    80. [80]

      Ye, X. S.; Shao, Z. G.; Zhao, H.; Yang, L.; Wang, C. L. RSC Adv. 2014, 4, 21216. doi: 10.1039/c4ra01802h  doi: 10.1039/c4ra01802h

    81. [81]

      Jose, D.; Datta, A. J. Phys. Chem. C 2012, 116, 24639. doi: 10.1021/jp3084716  doi: 10.1021/jp3084716

    82. [82]

      Ding, Y.; Wang, Y. J. Phys. Chem. C 2013, 117, 18266. doi: 10.1021/jp407666m  doi: 10.1021/jp407666m

    83. [83]

      Shao, Z. G.; Ye, X. S.; Yang, L.; Wang, C. L. J. Appl. Phys. 2013, 114, 093712. doi: 10.1063/1.4820526  doi: 10.1063/1.4820526

    84. [84]

      Hwang, E. H.; Das Sarma, S. Phys. Rev. B 2008, 77, 115449. doi: 10.1103/PhysRevB.77.115449  doi: 10.1103/PhysRevB.77.115449

    85. [85]

      Cai, Y.; Zhang, G.; Zhang, Y. W. J. Am. Chem. Soc. 2014, 136, 6269. doi: 10.1021/ja4109787  doi: 10.1021/ja4109787

    86. [86]

      Li, W. Phys. Rev. B 2015, 92, 075405. doi: 10.1103/PhysRevB.92.075405  doi: 10.1103/PhysRevB.92.075405

    87. [87]

      Oscar, D. R.; Kevin, E. K.; Joshua, G.; Wolfgang, W. New J. Phys. 2014, 16, 105009. doi: 10.1088/1367-2630/16/10/105009  doi: 10.1088/1367-2630/16/10/105009

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(12)
  • Abstract views(845)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return