Citation: LI Yongjun, LI Yuliang. Chemical Modification and Functionalization of Graphdiyne[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 992-1013. doi: 10.3866/PKU.WHXB201801302 shu

Chemical Modification and Functionalization of Graphdiyne

  • Corresponding author: LI Yuliang, ylli@iccas.ac.cn
  • Received Date: 27 December 2017
    Revised Date: 26 January 2018
    Accepted Date: 26 January 2018
    Available Online: 30 June 2018

    Fund Project: the National Key Research and Development Project of China 2016YFA0200104the National Natural Science Foundation of China 21790050the National Natural Science Foundation of China 21790051The project was supported by the National Natural Science Foundation of China (21790050, 21790051, 21672222), the National Key Research and Development Project of China (2016YFA0200104), Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SLH015)Key Research Program of Frontier Sciences, CAS QYZDY-SSW-SLH015the National Natural Science Foundation of China 21672222

  • Graphdiyne features sp and sp2 hybridized carbon atoms. The direct natural band gap and Dirac cone structure for graphdiyne are believed to originated from inhomogeneous π-bonding of differently hybridized carbon atoms and overlap of carbon 2pz orbitals. The special electronic structures and pore structures of graphdiyne are responsible for its potential and important applications in the fields of information technology, electronics, energy, catalysis, and optoelectronics. Recent basic and applied research studies of graphdiyne have led to important results; as a result, graphdiyne has become a new research field for carbon materials. The high activity of acetylenic units in graphdiyne provides a good platform for chemical modification and doping. Several approaches have been developed to modify the band gap of graphdiyne, including invoking strain, BN-doping, preparing nanoribbons, and hydrogenation, leading to a new graphdiyne (GDY) or graphyne (GY) derivatives. In this review, we summarize the recent progress in nonmetallic heteroatom doping, especially by nitrogen, boron, or oxygen; by modifying metal atoms for tuning electronic/spintronic properties, enhancing water splitting performance, and applying dye-sensitized solar cells and catalysts; and by surface functionalization of graphdiyne via hydrogenation, hydroxylation, and halogenation to adjust the band gap. Hence, it can be surmised that the electronic structures of graphdiynes can be tuned for specific applications. These results suggest that graphdiynes can be more advantageous than grapheme for tailoring energy band gaps for application in nanoelectronics. We also discuss the influence of doping and functionalization on the electronic properties of graphdiyne and their effects on the synergistic enhancement of photoelectrocatalytic performance. We hope that the deep and wide application of these new materials in many fields such as energy transfer and storage, catalyst, electronics, gas separation, and spintronics will draw much attention and become a widely focused research direction.
  • 加载中
    1. [1]

      Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43 (8), 2572. doi: 10.1039/C3CS60388A  doi: 10.1039/C3CS60388A

    2. [2]

      Li, Y. J.; Li, Y. L. Acta Polym. Sin. 2015, (2), 147.  doi: 10.11777/j.issn1000-3304.2015.14409

    3. [3]

      Liu, H.; Xu, J.; Li, Y.; Li, Y. Acc. Chem. Res. 2010, 43 (12), 1496. doi: 10.1021/ar100084y  doi: 10.1021/ar100084y

    4. [4]

      Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Acc. Chem. Res. 2017, 50 (10), 2470. doi: 10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    5. [5]

      Li, Y. L. Sci. Sin. Chim. 2017, 47 (9), 1045.  doi: 10.1360/N032016-00210

    6. [6]

      Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Chem. Commun. 2010, 46 (19), 3256. doi: 10.1039/b922733d  doi: 10.1039/b922733d

    7. [7]

      Jin, Z.; Zhou, Q.; Chen, Y.; Mao, P.; Li, H.; Liu, H.; Wang, J.; Li, Y. Adv. Mater. 2016, 28 (19), 3697. doi: 10.1002/adma.201600354  doi: 10.1002/adma.201600354

    8. [8]

      Qi, H.; Yu, P.; Wang, Y.; Han, G.; Liu, H.; Yi, Y.; Li, Y.; Mao, L. J. Am. Chem. Soc. 2015, 137 (16), 5260. doi: 10.1021/ja5131337  doi: 10.1021/ja5131337

    9. [9]

      Malko, D.; Neiss, C.; Vines, F.; Gorling, A. Phys. Rev. Lett. 2012, 108 (8), 086804. doi: 10.1103/PhysRevLett.108.086804  doi: 10.1103/PhysRevLett.108.086804

    10. [10]

      Du, H.; Yang, H.; Huang, C.; He, J.; Liu, H.; Li, Y. Nano Energy 2016, 22, 615. doi: 10.1016/j.nanoen.2016.02.052  doi: 10.1016/j.nanoen.2016.02.052

    11. [11]

      Huang, C.; Zhang, S.; Liu, H.; Li, Y.; Cui, G.; Li, Y. Nano Energy 2015, 11, 481. doi: 10.1016/j.nanoen.2014.11.036  doi: 10.1016/j.nanoen.2014.11.036

    12. [12]

      Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; Fang, J.; Li, Y. Nano Lett. 2015, 15 (4), 2756. doi: 10.1021/acs.nanolett.5b00787  doi: 10.1021/acs.nanolett.5b00787

    13. [13]

      Qian, X. M.; Liu, H. B.; Huang, C. S.; Chen, S. H.; Zhang, L.; Li, Y. J.; Wang, J. Z.; Li, Y. L. Sci Rep. 2015, 5. doi: 10.1038/srep07756  doi: 10.1038/srep07756

    14. [14]

      Xue, Y.; Guo, Y.; Yi, Y.; Li, Y.; Liu, H.; Li, D.; Yang, W.; Li, Y. Nano Energy 2016, 30, 858. doi: 10.1016/j.nanoen.2016.09.005  doi: 10.1016/j.nanoen.2016.09.005

    15. [15]

      Kim, B. G.; Choi, H. J. Phys. Rev. B 2012, 86 (11), 5. doi: 10.1103/PhysRevB.86.115435  doi: 10.1103/PhysRevB.86.115435

    16. [16]

      Ivanovskii, A. L. Prog. Solid State Chem. 2013, 41 (1–2), 1. doi: 10.1016/j.progsolidstchem.2012.12.001  doi: 10.1016/j.progsolidstchem.2012.12.001

    17. [17]

      Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323 (5915), 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    18. [18]

      Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2013, 52 (11), 3110. doi: 10.1002/anie.201209548  doi: 10.1002/anie.201209548

    19. [19]

      Gong, X.; Liu, S.; Ouyang, C.; Strasser, P.; Yang, R. ACS Catalysis 2015, 5 (2), 920. doi: 10.1021/cs501632y  doi: 10.1021/cs501632y

    20. [20]

      Meng, Y.; Voiry, D.; Goswami, A.; Zou, X.; Huang, X.; Chhowalla, M.; Liu, Z.; Asefa, T. J. Am. Chem. Soc. 2014, 136 (39), 13554. doi: 10.1021/ja507463w  doi: 10.1021/ja507463w

    21. [21]

      Hao, L.; Zhang, S.; Liu, R.; Ning, J.; Zhang, G.; Zhi, L. Adv. Mater. 2015, 27 (20), 3190. doi: 10.1002/adma.201500863  doi: 10.1002/adma.201500863

    22. [22]

      Li, Y.; Dai, H. Chem. Soc. Rev. 2014, 43 (15), 5257. doi: 10.1039/C4CS00015C  doi: 10.1039/C4CS00015C

    23. [23]

      Cao, R.; Lee, J. S.; Liu, M.; Cho, J. Adv. Energy Mater. 2012, 2 (7), 816. doi: 10.1002/aenm.201200013  doi: 10.1002/aenm.201200013

    24. [24]

      Dai, L.; Xue, Y.; Qu, L.; Choi, H. J.; Baek, J. B. Chem. Rev. 2015, 115 (11), 4823. doi: 10.1021/cr5003563  doi: 10.1021/cr5003563

    25. [25]

      Liang, Y.; Li, Y.; Wang, H.; Dai, H. J. Am. Chem. Soc. 2013, 135 (6), 2013. doi: 10.1021/ja3089923  doi: 10.1021/ja3089923

    26. [26]

      Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y.; Qiao, S. Z. Small 2012, 8 (23), 3550. doi: 10.1002/smll.201200861  doi: 10.1002/smll.201200861

    27. [27]

      Liu, J.; Song, P.; Ning, Z.; Xu, W. Electrocatalysis 2015, 6 (2), 132. doi: 10.1007/s12678-014-0243-9  doi: 10.1007/s12678-014-0243-9

    28. [28]

      Zhang, S.; Du, H.; He, J.; Huang, C.; Liu, H.; Cui, G.; Li, Y. ACS Appl Mater Interfaces 2016, 8 (13), 8467. doi: 10.1021/acsami.6b00255  doi: 10.1021/acsami.6b00255

    29. [29]

      Bu, H. X.; Zhao, M. W.; Zhang, H. Y.; Wang, X. P.; Xi, Y.; Wang, Z. H. J. Phys. Chem. A 2012, 116 (15), 3934. doi: 10.1021/jp300107d  doi: 10.1021/jp300107d

    30. [30]

      Kang, B. T.; Shi, H.; Wang, F. F.; Lee, J. Y. Carbon 2016, 105, 156. doi: 10.1016/j.carbon.2016.04.032  doi: 10.1016/j.carbon.2016.04.032

    31. [31]

      Bhattacharya, B.; Singh, N. B.; Sarkar, U. Int. J. Quantum Chem. 2015, 115 (13), 820. doi: 10.1002/qua.24910  doi: 10.1002/qua.24910

    32. [32]

      Mohajeri, A.; Shahsavar, A. J Mater Sci 2017, 52 (9), 5366. doi: 10.1007/s10853-017-0779-1  doi: 10.1007/s10853-017-0779-1

    33. [33]

      Das, B. K.; Sen, D.; Chattopadhyay, K. K. Phys. Chem. Chem. Phys. 2016, 18 (4), 2949. doi: 10.1039/c5cp05768j  doi: 10.1039/c5cp05768j

    34. [34]

      Lu, R.; Rao, D.; Meng, Z.; Zhang, X.; Xu, G.; Liu, Y.; Kan, E.; Xiao, C.; Deng, K. Phys. Chem. Chem. Phys. 2013, 15 (38), 16120. doi: 10.1039/c3cp52364k  doi: 10.1039/c3cp52364k

    35. [35]

      Kong, X. K.; Chen, Q. W.; Sun, Z. RSC Adv. 2013, 3 (12), 4074. doi: 10.1039/C3RA40190A  doi: 10.1039/C3RA40190A

    36. [36]

      Chen, X.; Qiao, Q.; An, L.; Xia, D. J. Phys. Chem. C 2015, 119 (21), 11493. doi: 10.1021/acs.jpcc.5b02505  doi: 10.1021/acs.jpcc.5b02505

    37. [37]

      Chen, X. Phys. Chem. Chem. Phys. 2015, 17 (43), 29340. doi: 10.1039/C5CP05350A  doi: 10.1039/C5CP05350A

    38. [38]

      Mohajeri, A.; Shahsavar, A. Com. Mater. Sci. 2016, 115, 51. doi: 10.1016/j.commatsci.2015.12.048  doi: 10.1016/j.commatsci.2015.12.048

    39. [39]

      Wang, N.; He, J.; Tu, Z.; Zhao, F.; Li, X.; Huang, C.; Wang, K.; Jiu, T.; Yi, Y.; Li, Y. Angew. Chem. Int. Ed. 2017, 56 (36), 10740. doi: 10.1002/anie.201704779  doi: 10.1002/anie.201704779

    40. [40]

      He, J.; Wang, N.; Cui, Z.; Du, H.; Fu, L.; Huang, C.; Yang, Z.; Shen, X.; Yi, Y.; Tu, Z.; Li, Y. Nat. Commun. 2017, 8 (1), 1172. doi: 10.1038/s41467-017-01202-2  doi: 10.1038/s41467-017-01202-2

    41. [41]

      Yun, J.; Zhang, Y.; Xu, M.; Wang, K.; Zhang, Z. Mater. Chem. Phys. 2016, 182, 439. doi: 10.1016/j.matchemphys.2016.07.053  doi: 10.1016/j.matchemphys.2016.07.053

    42. [42]

      Kim, S.; Lee, J. Y. J. Colloid Interface Sci. 2017, 493, 123. doi: 10.1016/j.jcis.2017.01.019  doi: 10.1016/j.jcis.2017.01.019

    43. [43]

      Ivanovskii, A. L.; Enyashin, A. N. Russ Chem Rev 2013, 82 (8), 735. doi: 10.1049/mnl.2012.0797  doi: 10.1049/mnl.2012.0797

    44. [44]

      Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Prog. Mater Sci. 2011, 56 (8), 1178. doi: 10.1016/j.pmatsci.2011.03.003  doi: 10.1016/j.pmatsci.2011.03.003

    45. [45]

      Yan; , L.; Zheng; , Y. B.; Zhao; , F.; Li; , S.; Gao; , X.; Bingqian Xu; Weiss; , P. S.; Zhao, Y. Chem. Soc. Rev. 2012, 41, 97. doi: 10.1039/C1CS15193B  doi: 10.1039/C1CS15193B

    46. [46]

      Mirnezhad, M.; Ansari, R.; Rouhi, H.; Seifi, M.; Faghihnasiri, M. Solid State Commun. 2012, 152 (20), 1885. doi: 10.1016/j.ssc.2012.07.024  doi: 10.1016/j.ssc.2012.07.024

    47. [47]

      Tan, J.; He, X.; Zhao, M. Diamond Relat. Mater. 2012, 29 (Supplement C), 42. doi: 10.1016/j.diamond.2012.07.006  doi: 10.1016/j.diamond.2012.07.006

    48. [48]

      Ma, S.; Zhang, C. X.; He, J.; Zhou, P.; Zhang, K. W.; He, C.; Sun, L. Z. Com. Mater. Sci. 2014, 91, 274. doi: 10.1016/j.commatsci.2014.05.006  doi: 10.1016/j.commatsci.2014.05.006

    49. [49]

      Autreto, P. A. S.; de Sousa, J. M.; Galvao, D. S. Carbon 2014, 77, 829. doi: 10.1016/j.carbon.2014.05.088  doi: 10.1016/j.carbon.2014.05.088

    50. [50]

      Hornekær, L.; Rauls, E.; Xu, W.; Šljivančanin, Ž.; Otero, R.; Stensgaard, I.; Lægsgaard, E.; Hammer, B.; Besenbacher, F. Phys. Rev. Lett. 2006, 97, 186102. doi: 10.1103/PhysRevLett.97.186102  doi: 10.1103/PhysRevLett.97.186102

    51. [51]

      Zhang, H.; Pan, H.; Zhang, M.; Luo, Y. Phys. Chem. Chem. Phys. 2016, 18 (34), 23954. doi: 10.1039/c6cp03955c  doi: 10.1039/c6cp03955c

    52. [52]

      Koo, J.; Huang, B.; Lee, H.; Kim, G.; Nam, J.; Kwon, Y.; Lee, H. J. Phys. Chem. C 2014, 118 (5), 2463. doi: 10.1021/jp4087464  doi: 10.1021/jp4087464

    53. [53]

      Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Phys. Rev. B 2007, 75 (15), 153401. doi: 10.1103/PhysRevB.75.153401  doi: 10.1103/PhysRevB.75.153401

    54. [54]

      Psofogiannakis, G. M.; Froudakis, G. E. J. Phys. Chem. C 2012, 116 (36), 19211. doi: 10.1021/jp306704b  doi: 10.1021/jp306704b

    55. [55]

      Psofogiannakis, G. M.; Froudakis, G. E. Chem. Commun. 2011, 47 (28), 7933. doi: 10.1039/C1CC11389E  doi: 10.1039/C1CC11389E

    56. [56]

      Koo, J.; Hwang, H. J.; Huang, B.; Lee, H.; Lee, H.; Park, M.; Kwon, Y.; Wei, S. H.; Lee, H. J. Phys. Chem. C 2013, 117 (23), 11960. doi: 10.1021/jp402286f  doi: 10.1021/jp402286f

    57. [57]

      Kang, B.; Liu, H.; Lee, J. Y. Phys. Chem. Chem. Phys. 2014, 16 (3), 974. doi: 10.1039/C3CP53237B  doi: 10.1039/C3CP53237B

    58. [58]

      Yan, J. A.; Xian, L.; Chou, M. Y. Phys. Rev. Lett. 2009, 103 (8), 086802. doi: 10.1103/PhysRevLett.103.086802  doi: 10.1103/PhysRevLett.103.086802

    59. [59]

      Yan, J. A.; Chou, M. Y. Phys. Rev. B 2010, 82 (12), 125403. doi: 10.1103/PhysRevB.82.125403  doi: 10.1103/PhysRevB.82.125403

    60. [60]

      Mohajeri, A.; Shahsavar, A. J. Mater. Sci. 2017, 52 (9), 5366. doi: 10.1007/s10853-017-0779-1  doi: 10.1007/s10853-017-0779-1

    61. [61]

      Zhang, P. R.; Ma, S. Y.; Sun, L. Z. Appl. Surf. Sci. 2016, 361, 206. doi: 10.1016/j.apsusc.2015.11.098  doi: 10.1016/j.apsusc.2015.11.098

    62. [62]

      Li, W.; Zhao, M.; Xia, Y.; Zhang, R.; Mu, Y. J. Mater. Chem. 2009, 19 (48), 9274. doi: 10.1039/B908949G  doi: 10.1039/B908949G

    63. [63]

      Koo, J.; Hwang, H. J.; Huang, B.; Lee, H.; Lee, H.; Park, M.; Kwon, Y.; Wei, S. H.; Lee, H. J. Phys. Chem. C 2013, 117 (23), 11960. doi: 10.1021/jp402286f  doi: 10.1021/jp402286f

    64. [64]

      Enyashin, A. N.; Ivanovskii, A. L. Superlattices Microstruct. 2013, 55 (Supplement C), 75. doi: 10.1016/j.spmi.2012.11.022  doi: 10.1016/j.spmi.2012.11.022

    65. [65]

      Bhattacharya, B.; Singh, N. B.; Sarkar, U. J. Phys.: Conf. Ser. 2014, 566, 012014. doi: 10.1088/1742-6596/566/1/012014  doi: 10.1088/1742-6596/566/1/012014

    66. [66]

      He, J. J.; Ma, S. Y.; Zhou, P.; Zhang, C. X.; He, C. Y.; Sun, L. Z. J. Phys. Chem. C 2012, 116 (50), 26313. doi: 10.1021/jp307408u  doi: 10.1021/jp307408u

    67. [67]

      Mashhadzadeh, A. H.; Vahedi, A. M.; Ardjmand, M.; Ahangari, M. G. Superlattices Microstruct. 2016, 100, 1094. doi: 10.1016/j.spmi.2016.10.079  doi: 10.1016/j.spmi.2016.10.079

    68. [68]

      Kim, S.; Ruiz Puigdollers, A.; Gamallo, P.; Vines, F.; Lee, J. Y. Carbon 2017, 120, 63. doi: 10.1016/j.carbon.2017.05.028  doi: 10.1016/j.carbon.2017.05.028

    69. [69]

      Wehling, T. O.; Lichtenstein, A. I.; Katsnelson, M. I. Phys Rev B 2011, 84 (23), 235110. doi: 10.1103/PhysRevB.84.235110  doi: 10.1103/PhysRevB.84.235110

    70. [70]

      Ivanovskaya V. V.; Ivanovskii A. L. Russ Chem Rev 2011, 80, 727. doi: 10.1070/RC2011v080n08ABEH004223  doi: 10.1070/RC2011v080n08ABEH004223

    71. [71]

      Lin, Z. Z.; Wei, Q.; Zhu, X. M. Carbon 2014, 66, 504. doi: 10.1016/j.carbon.2013.09.027  doi: 10.1016/j.carbon.2013.09.027

    72. [72]

      Alaei, S.; Jalili, S.; Erkoc, S. Fuller. Nanotub. Car. N. 2015, 23 (6), 494. doi: 10.1080/1536383x.2013.863767  doi: 10.1080/1536383x.2013.863767

    73. [73]

      Ma, D. W.; Li, T.; Wang, Q.; Yang, G.; He, C.; Ma, B.; Lu, Z. Carbon 2015, 95, 756. doi: 10.1016/j.carbon.2015.09.008  doi: 10.1016/j.carbon.2015.09.008

    74. [74]

      Lu, Z.; Li, S.; Lv, P.; He, C.; Ma, D.; Yang, Z. Appl. Surf. Sci. 2016, 360, 1. doi: 10.1016/j.apsusc.2015.10.219  doi: 10.1016/j.apsusc.2015.10.219

    75. [75]

      Li, C.; Li, J.; Wu, F.; Li, S.; Xia, J.; Wang, L. J. Phys. Chem. C 2011, 115, 23221. doi: 10.1021/jp208423y  doi: 10.1021/jp208423y

    76. [76]

      Hwang, H. J.; Kwon, Y.; Lee, H. J. Phys. Chem. C 2012, 116 (38), 20220. doi: 10.1021/jp306222v  doi: 10.1021/jp306222v

    77. [77]

      Guo, Y.; Lan, X.; Cao, J.; Xu, B.; Xia, Y.; Yin, J.; Liu, Z. Int. J. Hydrogen Energy 2013, 38 (10), 3987. doi: 10.1016/j.ijhydene.2013.01.064  doi: 10.1016/j.ijhydene.2013.01.064

    78. [78]

      Xu, B.; Lei, X. L.; Liu, G.; Wu, M. S.; Ouyang, C. Y. Int. J. Hydrogen Energy 2014, 39 (30), 17104. doi: 10.1016/j.ijhydene.2014.07.182  doi: 10.1016/j.ijhydene.2014.07.182

    79. [79]

      Lee, S. H.; Jhi, S. H. Carbon 2015, 81, 418. doi: 10.1016/j.carbon.2014.09.074  doi: 10.1016/j.carbon.2014.09.074

    80. [80]

      Liu, Y.; Liu, W.; Wang, R.; Hao, L.; Jiao, W. Int. J. Hydrogen Energy 2014, 39 (24), 12757. doi: 10.1016/j.ijhydene.2014.06.107  doi: 10.1016/j.ijhydene.2014.06.107

    81. [81]

      Zhang, L.; Zhang, S.; Wang, P.; Liu, C.; Huang, S.; Tian, H. Comput.Theor. Chem. 2014, 1035, 68. doi: 10.1016/j.comptc.2014.02.032  doi: 10.1016/j.comptc.2014.02.032

    82. [82]

      Zhang, M.; Wang, X.; Sun, H.; Wang, N.; Lv, Q.; Cui, W.; Long, Y.; Huang, C. Sci. Rep. 2017, 7 (1), 11535. doi: 10.1038/s41598-017-11698-9  doi: 10.1038/s41598-017-11698-9

    83. [83]

      Chen, X.; Gao, P.; Guo, L.; Wen, Y.; Zhang, Y.; Zhang, S. J. Phys. Chem. Solids 2017, 105, 61. doi: 10.1016/j.jpcs.2017.02.009  doi: 10.1016/j.jpcs.2017.02.009

    84. [84]

      Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2013, 117 (49), 26021. doi: 10.1021/jp407007n  doi: 10.1021/jp407007n

    85. [85]

      Liu, R.; Liu, H.; Li, Y.; Yi, Y.; Shang, X.; Zhang, S.; Yu, X.; Zhang, S.; Cao, H.; Zhang, G. Nanoscale 2014, 6 (19), 11336. doi: 10.1039/C4NR03185G  doi: 10.1039/C4NR03185G

    86. [86]

      Zhang, S.; Cai, Y.; He, H.; Zhang, Y.; Liu, R.; Cao, H.; Wang, M.; Liu, J.; Zhang, G.; Li, Y.; Liu, H.; Li, B. J. Mater. Chem. A 2016, 4 (13), 4738. doi: 10.1039/C5TA10579J  doi: 10.1039/C5TA10579J

    87. [87]

      Li, Y.; Guo, C.; Li, J.; Liao, W.; Li, Z.; Zhang, J.; Chen, C. Carbon 2017, 119, 201. doi: 10.1016/j.carbon.2017.04.038  doi: 10.1016/j.carbon.2017.04.038

    88. [88]

      Xue, Y.; Zuo, Z.; Li, Y.; Liu, H.; Li, Y. Small 2017, 1700936. doi: 10.1002/smll.201700936  doi: 10.1002/smll.201700936

    89. [89]

      Xue, Y.; Li, J.; Xue, Z.; Li, Y.; Liu, H.; Li, D.; Yang, W.; Li, Y. ACS Appl. Mater. Inter. 2016, 8 (45), 31083-31091. doi: 10.1021/acsami.6b12655  doi: 10.1021/acsami.6b12655

    90. [90]

      Ren, H.; Shao, H.; Zhang, L.; Guo, D.; Jin, Q.; Yu, R.; Wang, L.; Li, Y.; Wang, Y.; Zhao, H.; Wang, D. Adv. Energy Mater. 2015, 5 (12). doi: 10.1002/aenm.201500296  doi: 10.1002/aenm.201500296

    91. [91]

      Wu, P.; Du, P.; Zhang, H.; Cai, C. Phys. Chem. Chem. Phys. 2015, 17 (2), 1441. doi: 10.1039/c4cp04181j  doi: 10.1039/c4cp04181j

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

Metrics
  • PDF Downloads(36)
  • Abstract views(2335)
  • HTML views(450)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return