Citation: GUO Junjiang, TANG Shiyun, LI Rui, TAN Ningxin. Mechanism Construction and Simulation for Combustion of Large Hydrocarbon Fuels Applied in Wide Temperature Range[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 182-192. doi: 10.3866/PKU.WHXB201801264 shu

Mechanism Construction and Simulation for Combustion of Large Hydrocarbon Fuels Applied in Wide Temperature Range

  • Corresponding author: GUO Junjiang, junj_g@126.com TAN Ningxin, tanningxin@scu.edu.cn
  • Received Date: 27 December 2017
    Revised Date: 22 January 2018
    Accepted Date: 24 January 2018
    Available Online: 26 February 2018

    Fund Project: the National Natural Science Foundation of China 91741201S & T Plan Project Approving in Guizhou Guizhou branch in LH word [2016] 7104Civil-Military Integration in Guizhou Institute of Technology KJZX17-016The project was supported by the National Natural Science Foundation of China (91741201), S & T Plan Project Approving in Guizhou (No. Guizhou branch in LH word [2016] 7104) and Civil-Military Integration in Guizhou Institute of Technology (KJZX17-016)

  • The ignition characteristics of fuels and the release of energy in combustion engines are of crucial importance to engine design and improvement. To improve the fuel combustion efficiency and to reduce the associated pollutant emission, it is necessary to develop reliable high-precision reaction mechanisms for simulating combustion. Consequently, we need to comprehensively understand the combustion mechanisms of hydrocarbon fuels, and to explore their complicated chemical reaction networks. In order to construct combustion mechanisms that can be applied to conditions over a wide temperature range, wide pressure range, and for different equivalent ratios, two detailed mechanisms for the combustion of large hydrocarbons were developed based on ReaxGen, an automatic generation program for combustion and pyrolysis mechanisms developed by LI Xiangyuan et al. Using this program, one mechanism for n-decane combustion was developed, containing 1499 species and 5713 reactions, and another was developed for n-undecane combustion, containing 1843 species and 6993 reactions. All the detailed mechanisms of the alkanes consisted of two parts, a validated core mechanism and a sub-mechanism produced by ReaxGen which worked mainly based on the rules of the reaction class. The major classes of elementary reactions considered in our detailed mechanisms for n-decane and n-undecane combustion included 10 kinds of high-temperature combustion reactions and 19 kinds of low-temperature combustion reactions. To verify the rationality and reliability of the mechanisms, ignition delay times in shock tubes and the concentration profiles of important species in a jet-stirred reactor were obtained using CHEMKIN software. The obtained calculated data were compared with the experimental data and the results of similar mechanisms at home and abroad. It was shown that the numerically predicted results of our new mechanisms were in good agreement with available experimental data in the literature. Our newly developed n-decane and n-undecane combustion mechanisms are useful for completing the combustion model of aviation kerosene. Furthermore, considering the complexity of the detailed mechanisms, the large amount of calculation and the long time required for mechanism analysis, mechanism simplification was carried out. The sampling points required for mechanism reduction were taken from simulation results near the ignition delay time with pressures ranging from 1.0 × 105 Pa to 1.0 × 106 Pa, equivalence ratios ranging from 0.5 to 2.0, and initial temperatures ranging from 600 K to 1400 K. The species n-C10H22, N2, and O2 were selected as the initial important species for the n-decane combustion mechanism and the species n-C11H24, N2, and O2 were selected as the initial important species for the n-undecane combustion mechanism. The predicted results of ignition delay time from the simplified mechanism for n-decane combustion (including 709 species and 2793 reactions) and simplified mechanism for n-undecane combustion (including 820 species and 3115 reactions) generated by the reduction method of Directed Relation Graph with Error Propagation (DRGEP) agreed well with the detailed mechanisms. Finally, sensitivity analysis for the ignition delay time was carried out to identify reactions that affected ignition delay times at specific temperatures, pressures and equivalence ratios. The results indicate that these mechanisms are reliable for describing the auto-ignition characteristics of n-decane and n-undecane. These mechanisms would also be helpful in computational fluid dynamics (CFD) for engine design.
  • 加载中
    1. [1]

      Biet, J.; Hakka, M. H.; Warth, V.; Glaude, P. A.; Battin-Leclerc, F. Energ. Fuel. 2008, 22(4), 2258. doi: 10.1021/ef8000746  doi: 10.1021/ef8000746

    2. [2]

      Nehse, M.; Warnatz, J.; Chevalier, C. Symp. (Int.) Combust. 1996, 26(1), 773. doi:10.1016/S0082-0784(96v)80286-4  doi: 10.1016/S0082-0784(96v)80286-4

    3. [3]

      Muharam, Y.; Warnatz, J. Phys. Chem. Chem. Phys. 2007, 9(31), 4218. doi: 10.1039/b703415f  doi: 10.1039/b703415f

    4. [4]

      Ranzi, E.; Frassoldati, A.; Granata, S.; Faravelli, T. Ind. Eng. Chem. Res. 2005, 44(14), 5170. doi: 10.1021/ie049318g  doi: 10.1021/ie049318g

    5. [5]

      Li, J.; Shao, J. X.; Liu, C. X.; Rao, H. B.; Li, Z. R.; Li, X. Y. J. Chin. Chem. Soc. 2010, 68(3), 239.

    6. [6]

      Tan, N. X.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Li, X. Y. Chem. J. Chin. Univ. 2011, 32(8), 1832.

    7. [7]

      Guo, J. J.; Hua, X. X.; Wang, F.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2014, 30(6), 1027.  doi: 10.3866/PKU.WHXB201404031

    8. [8]

      Guo, J. J.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Tan, N. X.; Li, X. Y. Chem. Res. Chin. Univ. 2014, 30(3), 480. doi:10.1007/s40242-014-3460-0  doi: 10.1007/s40242-014-3460-0

    9. [9]

      Guo, J. J.; Li, S. H.; Tan, N. X.; Li, X. Y. J. Eng. Thermophys.2014, 35(11), 2298.

    10. [10]

      Qi, F.; Li, Y. Y.; Zeng, M. F.; Zhang, F. J. Univ. Sci. Technol. China 2013, 43, 948.  doi: 10.3969/j.issn.0253-2778.2013.11.011

    11. [11]

      Dagaut, P.; Bakali, E. A.; Ristori, A. Fuel 2006, 85(7-8), 944. doi: 10.1016/j.fuel.2005.10.008  doi: 10.1016/j.fuel.2005.10.008

    12. [12]

      Humer, S.; Frassoldati, A.; Granata, S.; Faravelli, T.; Ranzi, E.; Seiser, R.; Seshadri, K. Proc. Combust. Inst. 2007, 31(1), 393. doi: 10.1016/j.proci.2006.08.008  doi: 10.1016/j.proci.2006.08.008

    13. [13]

      Wang, H.; Warner, S. J.; Oehlschlaeger, M. A.; Bounaceur, R.; Biet, J.; Glaude, P. A.; Battin-Leclerc, F. Combust. Flame 2010, 157(10), 1976. doi: 10.1016/j.combustflame.2010.04.007  doi: 10.1016/j.combustflame.2010.04.007

    14. [14]

      Dagaut, P. Phys. Chem. Chem. Phys. 2002, 4 (11), 2079. doi: 10.1039/B110787A  doi: 10.1039/B110787A

    15. [15]

      Natelson, R. H.; Kurman, M. S.; Cernansky, N. P.; Cernansky, N. P.; Miller, D. L. Fuel 2008, 87 (10-11), 2339. doi: 10.1016/j.fuel.2007.11.009  doi: 10.1016/j.fuel.2007.11.009

    16. [16]

      Dagaut, P.; Cathonnet, M. Prog. Energy Combust. Sci. 2006, 32 (1), 48. doi: 10.1016/j.pecs.2005.10.003  doi: 10.1016/j.pecs.2005.10.003

    17. [17]

      Ji, C.; Dames, E.; Wang, Y. L.; Wang, H.; Egolfopoulos, F. N. Combust. Flame 2010, 157, 277. doi: 10.1016/j.combustflame.2009.06.011  doi: 10.1016/j.combustflame.2009.06.011

    18. [18]

      Glassman, I. ; Yetter, R. A. ; Glumac, N. G. Combustion; Academic Press: San Diego, CA, USA; 2014.

    19. [19]

      Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45, 638. doi: 10.1002/kin.20802  doi: 10.1002/kin.20802

    20. [20]

      Yao, Q.; Peng, L. J.; Li, Z. R.; Li, X. Y. Acta Phys. -Chim Sin. 2017, 33(4), 763.  doi: 10.3866/PKU.WHXB201701091

    21. [21]

      Sun, X. H.; Yao, Q.; Li, Z. R.; Wang, J. B.; Li, X. Y. Theor. Chem. Acc. 2017, 136(5), 64. doi: 10.1007/s00214-017-2086-y  doi: 10.1007/s00214-017-2086-y

    22. [22]

      Yao, Q.; Sun, X. H.; Li, Z. R.; Chen, F. F.; Li, X. Y. J. Phys. Chem. A 2017, 121 (16), 3001. doi: 10.1021/acs.jpca.6b10818  doi: 10.1021/acs.jpca.6b10818

    23. [23]

      Guo, J.; Tang, S.; Tan, N. RSC Adv. 2017, 7(71), 44809. doi: 10.1039/c7ra07734c  doi: 10.1039/c7ra07734c

    24. [24]

      Curran, H. J.; Gaffuri, P.; Pitz, W.; Westbrook, C. K. Combust. Flame 1998, 114(1-2), 149. doi: 10.1016/S0010-2180(97)00282-4  doi: 10.1016/S0010-2180(97)00282-4

    25. [25]

      Benson, S. W. Thermochemical Kinetics, 2nd ed. ; John Wiley and Sons: New York, NY, USA; 1976.

    26. [26]

      Holley, A. T.; You, X. Q.; Dames, E.; Wang, H.; Egolfopoulos, F. N. Proc. Combust. Inst. 2009, 32(1), 1157. doi:10.1016/j.proci.2008.05.067  doi: 10.1016/j.proci.2008.05.067

    27. [27]

      Benson, S. W. Prog. Energy Combust. Sci. 1981, 7, 125. doi: 10.1016/0360-1285(81)90007-1  doi: 10.1016/0360-1285(81)90007-1

    28. [28]

      Westbrook, C. K.; Pitz, W. J.; Herbinet, O.; Curran, H. J.; Silke, E. J. Combust. Flame 2009, 156(1), 181. doi: 10.1016/j.combustflame.2008.07.014  doi: 10.1016/j.combustflame.2008.07.014

    29. [29]

      CHEMKIN-PRO 15092; Reaction Design: San Diego, CA, USA, 2010.

    30. [30]

      Pfahl, U.; Fieweger, K.; Adomeit, G. Symp. (Int.) Combust. 1996, 26(1), 781. doi: 10.1016/S0082-0784(96)80287-6  doi: 10.1016/S0082-0784(96)80287-6

    31. [31]

      Zhang, W. F.; Xian, L. Y.; Yong, K. L.; He, J. N.; Zhang, C. H.; Li, P.; Li, X. Y. Acta Phys. -Chim Sin. 2016, 32(9), 2216.  doi: 10.3866/PKU.WHXB201605162

    32. [32]

      Chang, Y. C.; Jia, M.; Liu, Y. D.; Li, Y. P.; Xie, M. Z.; Yin, H. C. Energy Fuels 2013, 27, 3467. doi: 10.1016/j.combustflame.2013.02.017  doi: 10.1016/j.combustflame.2013.02.017

    33. [33]

      Dagaut, P.; Reuillon, M.; Cathonnet, M. Combust. Sci. Technol. 1994, 103(1-6), 349. doi: 10.1080/00102209408907703  doi: 10.1080/00102209408907703

    34. [34]

      Mzé-Ahmed, A.; Hadj-Ali, K.; Dagaut, P.; Dayma, G. Energy Fuels 2012, 26(7), 4253. doi: 10.1021/ef300588j  doi: 10.1021/ef300588j

    35. [35]

      Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154(1), 67. doi: 10.1016/j.combustflame.2007.10.020  doi: 10.1016/j.combustflame.2007.10.020

    36. [36]

      Li, S. H.; Li, R.; Guo, J. J.; Tan, N. X.; Wang, F.; Li, X. Y. Acta Phys. -Chim. Sin. 2016, 32(7), 1623.  doi: 10.3866/PKU.WHXB201604084

    37. [37]

      Lu, T. F.; Law, C. K. Combust. Flame 2006, 144(1-2), 24. doi:10.1016/j.combustflame.2005.02.015  doi: 10.1016/j.combustflame.2005.02.015

    38. [38]

      Jiang, Y.; Qiu, R. Acta Phys. -Chim. Sin. 2009, 25, 1019.  doi: 10.3866/PKU.WHXB20090426

    39. [39]

      Kumar, K.; Mittal, G.; Sung, C. J.; Law, C. K. Combust. Flame 2008, 153(3), 343. doi:10.1016/j.combustflame.2007.11.012  doi: 10.1016/j.combustflame.2007.11.012

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    13. [13]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    14. [14]

      Haiyuan Wang Shanshan Cheng Hui Yang . Development and Exploration of the Ideological and Political Education Framework in Applied Chemistry Postgraduate Curriculum. University Chemistry, 2024, 39(6): 72-82. doi: 10.3866/PKU.DXHX202311020

    15. [15]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

    16. [16]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    17. [17]

      Weizhou Jiao Zhiwei Liu Chao Zhang Zhiguo Yuan Guisheng Qi Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011

    18. [18]

      Wenyi Liang Chi Zhang Yuxin Fang Meiyu Lin Yaqian Duan Songzhang Shen Juan Su . Construction and Practice of a Safety Education System on “Teaching-Examination Linkage” in Chemical Laboratories. University Chemistry, 2024, 39(10): 330-336. doi: 10.12461/PKU.DXHX202404127

    19. [19]

      Simin Fang Hong Wu Lingling Li Yuxi Wang Hongchun Li Jun Jiang Guoqing Zhang . Construction and Implementation of the General Education Course “Kitchen Chemistry”. University Chemistry, 2024, 39(10): 396-401. doi: 10.12461/PKU.DXHX202404028

    20. [20]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

Metrics
  • PDF Downloads(10)
  • Abstract views(762)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return