Citation: NING Hui, WANG Wenhang, MAO Qinhu, ZHENG Shirui, YANG Zhongxue, ZHAO Qingshan, WU Mingbo. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 938-944. doi: 10.3866/PKU.WHXB201801263 shu

Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets

  • Corresponding author: WU Mingbo, wumb@upc.edu.cn
  • Received Date: 3 January 2018
    Revised Date: 23 January 2018
    Accepted Date: 23 January 2018
    Available Online: 26 August 2018

    Fund Project: the National Natural Science Foundation of China U1662113The project was supported by the CAS Key Laboratory of Carbon Materials, China (KLCMKFJJ1706) and the National Natural Science Foundation of China (51372277, 51572296, U1662113)the National Natural Science Foundation of China 51572296the National Natural Science Foundation of China 51372277The project was supported by the CAS Key Laboratory of Carbon Materials, China KLCMKFJJ1706

  • The electrocatalytic reduction of CO2 to C2H4 is a topic of great interest. It is known that the preparation of efficient catalysts for this transformation is the key factor that determines the yield of C2H4. In this study, we prepared 1-octyl-3-methylimidazole functionalized graphite sheets (ILGS) in a facile manner by the electro-exfoliation of pure graphite rod in an aqueous solution of 1-octyl-3-methylimidazolium chloride (OmimCl : H2O = 1 : 5, V/V) at 10 V. They were then dispersed in an aqueous solution of copper chloride and sodium citrate. Subsequent reduction with sodium borohydride led to the formation of a composite comprised of cuprous oxide supported on Omim-functionalized graphite sheets (Cu2O/ILGS). This composite was found to be an efficient catalyst for the electroreduction of carbon dioxide to ethylene. The as-made materials were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and X-ray diffraction (XRD). The TEM images showed that the ILGS were composed of multiple layers of graphene. The XRD pattern and Raman spectrum indicated that the surface of the ILGS possessed several defects. In the electro-exfoliation process, the defects in the ILGS were modified in situ by covalent bonding with Omim groups, which was also confirmed by XPS. The Cu2O nanoparticles with an average diameter of 5 nm were uniformly distributed on the surface of the ILGS because the Omim groups grafted to the graphite sheets acted as anchors and prevented their aggregation by the steric effect. The electrocatalytic activities of Cu2O/ILGS for CO2 reduction were measured at different voltages in 0.1 mol L–1 KHCO3 aqueous solution under ambient temperature and pressure. These experiments showed that the catalytic performance of the Cu2O/ILGS composite was determined by cuprous oxide, while the ILGS displayed nearly no catalytic activity in the electroreduction of carbon dioxide. The faradaic efficiency of hydrogen and carbon dioxide reduction products changed with the reaction time because of the reduction of Cu2O to Cu under the electroreduction conditions. The faradaic efficiency of ethylene was ~14.8% at –1.3 V (versus reversible hydrogen electrode). The performance of Cu2O/ILGS in the catalytic electroreduction of carbon dioxide was attributed to the stabilization of the Cu2O nanoparticles by the nest-like microstructures in the Cu2O/ILGS composite.
  • 加载中
    1. [1]

      Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Angew. Chem. Int. Ed. 2017, 56, 10844. doi: 10.1002/anie.201706777  doi: 10.1002/anie.201706777

    2. [2]

      Chang, X. X.; Wang, T.; Zhang, P.; Wei, Y. J.; Zhao, J. B.; Gong, J. L. Angew. Chem. Int. Ed. 2016, 55, 8840. doi: 10.1002/anie.201602973  doi: 10.1002/anie.201602973

    3. [3]

      Chang, X. X.; Wang, T.; Gong, J. L. Energ. Environ. Sci. 2016, 9, 2177. doi: 10.1039/c6ee00383d  doi: 10.1039/c6ee00383d

    4. [4]

      Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Catal. Sci. Technol. 2015, 5, 161. doi: 10.1039/c4cy00906a  doi: 10.1039/c4cy00906a

    5. [5]

      Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; et al. Nat. Commun. 2016, 7, 12123. doi: 10.1038/ncomms12123  doi: 10.1038/ncomms12123

    6. [6]

      Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Angew. Chem. Int. Ed. 2017, 56, 796. doi: 10.1002/anie.201610432  doi: 10.1002/anie.201610432

    7. [7]

      Kwon, Y.; Lum, Y.; Clark, E. L.; Ager, J. W.; Bell, A. T. ChemElectroChem 2016, 3, 1012. doi: 10.1002/celc.201600068  doi: 10.1002/celc.201600068

    8. [8]

      Roberts, F. S.; Kuhl, K. P.; Nilsson, A. Angew. Chem. Int. Ed. 2015, 54, 5179. doi: 10.1002/anie.201412214  doi: 10.1002/anie.201412214

    9. [9]

      Ye, S. H.; He, X. J.; Ding, L. X.; Pan, Z. W.; Tong, Y. X.; Wu, M. M.; Li, G. R. Chem. Commun. 2014, 50, 12337. doi: 10.1039/c4cc04108a  doi: 10.1039/c4cc04108a

    10. [10]

      Han, Z. J.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T. ACS Central Sci. 2017, 3, 853. doi: 10.1021/acscentsci.7b00180  doi: 10.1021/acscentsci.7b00180

    11. [11]

      Li, Y. F.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y. C.; Yang, P. D. Nano Lett. 2017, 17, 1312. doi: 10.1021/acs.nanolett.6b05287  doi: 10.1021/acs.nanolett.6b05287

    12. [12]

      Handoko, A. D.; Chan, K. W.; Yeo, B. S. ACS Energy Lett. 2017, 2, 2103. doi: 10.1021/acsenergylett.7b00514  doi: 10.1021/acsenergylett.7b00514

    13. [13]

      Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A. J. Phys. Chem. Lett. 2016, 7, 1466. doi: 10.1021/acs.jpclett.6b00367  doi: 10.1021/acs.jpclett.6b00367

    14. [14]

      Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282  doi: 10.1002/anie.201601282

    15. [15]

      Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q  doi: 10.1021/cs502128q

    16. [16]

      Lee, S.; Kim, D.; Lee, J. Angew. Chem. Int. Ed. 2015, 127, 14914. doi: 10.1002/anie.201505730  doi: 10.1002/anie.201505730

    17. [17]

      Kim, D.; Lee, S.; Ocon, J. D.; Jeong, B.; Lee, J. K.; Lee, J. Phys. Chem. Chem. Phys. 2015, 17, 824. doi: 10.1039/c4cp03172e  doi: 10.1039/c4cp03172e

    18. [18]

      Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. Adv. Funct. Mater. 2008, 18, 1518. doi: 10.1002/adfm.200700797  doi: 10.1002/adfm.200700797

    19. [19]

      Sun, X. F.; Kang, X. C.; Zhu, Q. G.; Ma, J.; Yang, G. Y.; Liu, Z. M.; Han, B. X. Chem. Sci. 2016, 7, 2883. doi: 10.1039/c5Sc04158a  doi: 10.1039/c5Sc04158a

    20. [20]

      Kang, X. C.; Zhu, Q. G.; Sun, X. F.; Hu, J. Y.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Chem. Sci. 2016, 7, 266. doi: 10.1039/c5sc03291a  doi: 10.1039/c5sc03291a

    21. [21]

      Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Angew. Chem. Int. Ed.2017, 56, 13135. doi: 10.1002/anie.201707478  doi: 10.1002/anie.201707478

    22. [22]

      DeCiccio, D.; Ahn, S. T.; Sen, S.; Schunk, F.; Palmore, G. T. R.; Rose-Petruck, C. Electrochem. Commun. 2015, 52, 13. doi: 10.1016/j.elecom.2015.01.006  doi: 10.1016/j.elecom.2015.01.006

    23. [23]

      Hong, J. D.; Zhang, W.; Ren, J.; Xu, R. Anal. Methods 2013, 5, 1086. doi: 10.1039/c2ay26270c  doi: 10.1039/c2ay26270c

    24. [24]

      Parvez, K.; Wu, Z. S.; Li, R. J.; Liu, X. J.; Graf, R.; Feng, X. L.; Mullen, K. J. Am. Chem. Soc. 2014, 136, 6083. doi: 10.1021/ja5017156  doi: 10.1021/ja5017156

    25. [25]

      Zhang, Y.; Wang, X.; Zeng, L.; Song, S.; Liu, D. Dalton Trans. 2012, 41, 4316. doi: 10.1039/c2dt12461k  doi: 10.1039/c2dt12461k

    26. [26]

      Zhu, Q. G.; Sun, X. F.; Kang, X. C.; Ma, J.; Qian, Q. L.; Han, B. X. Acta Phys. -Chim. Sin. 2016, 32, 261.  doi: 10.3866/PKU.WHXB201512101

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    3. [3]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    11. [11]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    12. [12]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    13. [13]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    14. [14]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    15. [15]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    16. [16]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    17. [17]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    18. [18]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    19. [19]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

Metrics
  • PDF Downloads(11)
  • Abstract views(246)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return