Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets
- Corresponding author: WU Mingbo, wumb@upc.edu.cn
Citation: NING Hui, WANG Wenhang, MAO Qinhu, ZHENG Shirui, YANG Zhongxue, ZHAO Qingshan, WU Mingbo. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 938-944. doi: 10.3866/PKU.WHXB201801263
Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Angew. Chem. Int. Ed. 2017, 56, 10844. doi: 10.1002/anie.201706777
doi: 10.1002/anie.201706777
Chang, X. X.; Wang, T.; Zhang, P.; Wei, Y. J.; Zhao, J. B.; Gong, J. L. Angew. Chem. Int. Ed. 2016, 55, 8840. doi: 10.1002/anie.201602973
doi: 10.1002/anie.201602973
Chang, X. X.; Wang, T.; Gong, J. L. Energ. Environ. Sci. 2016, 9, 2177. doi: 10.1039/c6ee00383d
doi: 10.1039/c6ee00383d
Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Catal. Sci. Technol. 2015, 5, 161. doi: 10.1039/c4cy00906a
doi: 10.1039/c4cy00906a
Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; et al. Nat. Commun. 2016, 7, 12123. doi: 10.1038/ncomms12123
doi: 10.1038/ncomms12123
Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Angew. Chem. Int. Ed. 2017, 56, 796. doi: 10.1002/anie.201610432
doi: 10.1002/anie.201610432
Kwon, Y.; Lum, Y.; Clark, E. L.; Ager, J. W.; Bell, A. T. ChemElectroChem 2016, 3, 1012. doi: 10.1002/celc.201600068
doi: 10.1002/celc.201600068
Roberts, F. S.; Kuhl, K. P.; Nilsson, A. Angew. Chem. Int. Ed. 2015, 54, 5179. doi: 10.1002/anie.201412214
doi: 10.1002/anie.201412214
Ye, S. H.; He, X. J.; Ding, L. X.; Pan, Z. W.; Tong, Y. X.; Wu, M. M.; Li, G. R. Chem. Commun. 2014, 50, 12337. doi: 10.1039/c4cc04108a
doi: 10.1039/c4cc04108a
Han, Z. J.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T. ACS Central Sci. 2017, 3, 853. doi: 10.1021/acscentsci.7b00180
doi: 10.1021/acscentsci.7b00180
Li, Y. F.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y. C.; Yang, P. D. Nano Lett. 2017, 17, 1312. doi: 10.1021/acs.nanolett.6b05287
doi: 10.1021/acs.nanolett.6b05287
Handoko, A. D.; Chan, K. W.; Yeo, B. S. ACS Energy Lett. 2017, 2, 2103. doi: 10.1021/acsenergylett.7b00514
doi: 10.1021/acsenergylett.7b00514
Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A. J. Phys. Chem. Lett. 2016, 7, 1466. doi: 10.1021/acs.jpclett.6b00367
doi: 10.1021/acs.jpclett.6b00367
Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282
doi: 10.1002/anie.201601282
Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q
doi: 10.1021/cs502128q
Lee, S.; Kim, D.; Lee, J. Angew. Chem. Int. Ed. 2015, 127, 14914. doi: 10.1002/anie.201505730
doi: 10.1002/anie.201505730
Kim, D.; Lee, S.; Ocon, J. D.; Jeong, B.; Lee, J. K.; Lee, J. Phys. Chem. Chem. Phys. 2015, 17, 824. doi: 10.1039/c4cp03172e
doi: 10.1039/c4cp03172e
Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. Adv. Funct. Mater. 2008, 18, 1518. doi: 10.1002/adfm.200700797
doi: 10.1002/adfm.200700797
Sun, X. F.; Kang, X. C.; Zhu, Q. G.; Ma, J.; Yang, G. Y.; Liu, Z. M.; Han, B. X. Chem. Sci. 2016, 7, 2883. doi: 10.1039/c5Sc04158a
doi: 10.1039/c5Sc04158a
Kang, X. C.; Zhu, Q. G.; Sun, X. F.; Hu, J. Y.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Chem. Sci. 2016, 7, 266. doi: 10.1039/c5sc03291a
doi: 10.1039/c5sc03291a
Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Angew. Chem. Int. Ed.2017, 56, 13135. doi: 10.1002/anie.201707478
doi: 10.1002/anie.201707478
DeCiccio, D.; Ahn, S. T.; Sen, S.; Schunk, F.; Palmore, G. T. R.; Rose-Petruck, C. Electrochem. Commun. 2015, 52, 13. doi: 10.1016/j.elecom.2015.01.006
doi: 10.1016/j.elecom.2015.01.006
Hong, J. D.; Zhang, W.; Ren, J.; Xu, R. Anal. Methods 2013, 5, 1086. doi: 10.1039/c2ay26270c
doi: 10.1039/c2ay26270c
Parvez, K.; Wu, Z. S.; Li, R. J.; Liu, X. J.; Graf, R.; Feng, X. L.; Mullen, K. J. Am. Chem. Soc. 2014, 136, 6083. doi: 10.1021/ja5017156
doi: 10.1021/ja5017156
Zhang, Y.; Wang, X.; Zeng, L.; Song, S.; Liu, D. Dalton Trans. 2012, 41, 4316. doi: 10.1039/c2dt12461k
doi: 10.1039/c2dt12461k
Zhu, Q. G.; Sun, X. F.; Kang, X. C.; Ma, J.; Qian, Q. L.; Han, B. X. Acta Phys. -Chim. Sin. 2016, 32, 261.
doi: 10.3866/PKU.WHXB201512101
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416