Citation: CONTRERAS-GARCíA Julia, YANG Weitao. Perspective: Chemical Information Encoded in Electron Density[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 567-580. doi: 10.3866/PKU.WHXB201801261 shu

Perspective: Chemical Information Encoded in Electron Density


  • Author Bio: Dr. Contreras-García completed her Ph.D. studies in University of Oviedo with a National grant. She then went to Duke University as a Fulbright student, under the advisory of Prof. Yang. After another year of postdoctoral studies with Andreas Savin, she obtained her position at CNRS attached to Sorbonne University. She is interested in theories of chemical bonding in Euclidian space and the application to high pressure. In 2013 she received the European Award for young researchers in High Pressure

  • Corresponding author: CONTRERAS-GARCíA Julia, contrera@lct.jussieu.fr
  • Received Date: 22 November 2017
    Revised Date: 15 January 2018
    Accepted Date: 15 January 2016
    Available Online: 26 June 2016

    Fund Project: the National Science Foundation CHE-1362927This work was supported partially by the Framework of CALSIMLAB under the Public Grant ANR-11-LABX-0037-01 Overseen by the French National Research Agency (ANR) as Part of the "Investissements d'Avenir" Program (reference: ANR-11-IDEX-0004-02), by the National Science Foundation (CHE-1362927) and by the National Institute of Health (R01-GM061870), USAthe National Institute of Health, USA R01-GM061870the Framework of CALSIMLAB under the Public Grant ANR-11-LABX-0037-01 Overseen by the French National Research Agency (ANR) as Part of the "Investissements d'Avenir" Program ANR-11-IDEX-0004-02

  • In this perspective, we review the chemical information encoded in electron density and other ingredients used in semilocal functionals. This information is usually looked at from the functional point of view: the exchange density or the enhancement factor are discussed in terms of the reduced density gradient. However, what parts of a molecule do these 3D functions represent? We look at these quantities in real space, aiming to understand the electronic structure information they encode and provide an insight from the quantum chemical topology (QCT). Generalized gradient approximations (GGAs) provide information about the presence of chemical interactions, whereas meta-GGAs can differentiate between the different bonding types. By merging these two techniques, we show new insight into the failures of semilocal functionals owing to three main errors: fractional charges, fractional spins, and non-covalent interactions. We build on simple models. We also analyze the delocalization error in hydrogen chains, showing the ability of QCT to reveal the delocalization error introduced by semilocal functionals. Then, we show how the analysis of localization can help understand the fractional spin error in alkali atoms, and how it can be used to correct it. Finally, we show that the poor description of GGAs of isodesmic reactions in alkanes is due to 1, 3-interactions.
  • 加载中
    1. [1]

      Perdew, J. P.; Schmidt, K. AIP Conference Proceedings 2001, 577, 1. doi: 10.10631.1390175  doi: 10.106/31.1390175

    2. [2]

      Popelier P. L. A.. Quantum Chemical Topology in "The Chemical Bond Ⅱ: 100 Years Old and Getting Stronger"; Mingos, D., Michael P.., Eds.[J]. Springer: Cham, Switzerland, 2016.

    3. [3]

      Bader R. F. W.. Atoms in Molecules: A Quantum Theory[J]. Oxford Science Publications: Oxford, UK, 1990.

    4. [4]

      Matta C. F., Boyd R. J.. An Introduction to the Quantum Theory of Atoms in Molecules[J]. Wiley-VCH Verlag GmbH & Co.: Hoboken, NJ, US, 2007. doi: 10.1002/9783527610709.ch1

    5. [5]

      Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397. doi: 10.1063i/1.458517  doi: 10.1063i/1.458517

    6. [6]

      Silvi, B.; Savin, A. Nature 1994, 371, 683. doi: 10.1038/371683a0  doi: 10.1038/371683a0

    7. [7]

      Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem. Int. Ed. 1997, 36, 1808. doi: 10.1002/anie.199718081  doi: 10.1002/anie.199718081

    8. [8]

      Schmider, H. L.; Becke, A. D. J. Mol. Struct. Theochem. 2000, 527, 51. doi: 10.1016/S0166-1280(00)00477-2  doi: 10.1016/S0166-1280(00)00477-2

    9. [9]

      Schmider, H. L.; Becke, A. D. J. Chem. Phys. 2002, 116, 3184. doi: 10.1063/1.1431271  doi: 10.1063/1.1431271

    10. [10]

      Hohenberg, P.; Kohn, W. Phys. Rev B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864  doi: 10.1103/PhysRev.136.B864

    11. [11]

      Spackman, M.; Maslen, E. J. Phys. Chem. 1986, 90, 2020. doi: 10.1021/j100401a010  doi: 10.1021/j100401a010

    12. [12]

      Gunnarsson, O.; Lunqvist, B. I. Phys. Rev. B 1976, 13, 4274. doi: 10.1103/PhysRevB.13.4274  doi: 10.1103/PhysRevB.13.4274

    13. [13]

      Becke, A. D. Phys. Rev. A. 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098  doi: 10.1103/PhysRevA.38.3098

    14. [14]

      Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244  doi: 10.1103/PhysRevB.45.13244

    15. [15]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785. doi: 10.1103/PhysRevB.37.785  doi: 10.1103/PhysRevB.37.785

    16. [16]

      Sahni, V.; Gruenebaum, J.; Perdew, J. P. Phys. Rev. B 1982, 26, 4371. doi: 10.1103/PhysRevB.26.4371  doi: 10.1103/PhysRevB.26.4371

    17. [17]

      Pearson, E. W.; Gordon, R. G. J. Chem. Phys. 1985, 82, 881. doi: 10.1063/1.448516  doi: 10.1063/1.448516

    18. [18]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.78.1396  doi: 10.1103/PhysRevLett.78.1396

    19. [19]

      Zupan, A.; Perdew, J. P.; Burke, K.; Causá, M. Int. J. Quantum Chem. 1997, 61, 835. doi: 10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.0.CO;2-X  doi: 10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.0.CO;2-X

    20. [20]

      Zupan, A.; Burke, K.; Ernzerhof, M.; Perdew, J. P. J. Chem. Phys. 1997, 106, 10184. doi: 10.1063/1.474101  doi: 10.1063/1.474101

    21. [21]

      Tognetti, V.; Cortona, P.; Adamo, C. J. Chem. Phys. 2008, 128, 034101. doi: 10.1063/1.2816137  doi: 10.1063/1.2816137

    22. [22]

      Boto, R. A.; Contreras-García, J.; Tierny, J.; Piquemal, J. P. Mol. Phys. 2015, 114, 1. doi: 10.1080/00268976.2015.1123777  doi: 10.1080/00268976.2015.1123777

    23. [23]

      Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498. doi: 10.1021/ja100936w  doi: 10.1021/ja100936w

    24. [24]

      Lane, J. R.; Contreras-García, J.; Piquemal, J. P.; Miller, B. J.; Kjaergaard, H. G. J. Chem. Theory Comp. 2013, 9, 3263. doi: 10.1021/ct400420r  doi: 10.1021/ct400420r

    25. [25]

      del Campo, J. M.; Gázquez, J. L.; Alvarez-Mendez, R. J.; Vela, A. Int. J. Quantum Chem. 2012, 112, 3594. doi: 10.1002/qua.24241  doi: 10.1002/qua.24241

    26. [26]

      Boto, R. A.; Piquemal, J. P.; Contreras-García, J. Theor. Chem. Acc. 2017, 136, 139. doi: 10.1007/s00214-017-2169-9  doi: 10.1007/s00214-017-2169-9

    27. [27]

      Arfken G.. Mathematical Methods for Physicists[J]. Academic Press: Orlando, FL, USA, 1985.

    28. [28]

      Bader, R. F. W.; Essén, H. J. Chem. Phys. 1984, 80, 1943. doi: 10.1063/1.446956  doi: 10.1063/1.446956

    29. [29]

      Slater, J. C. J. Chem. Phys. 1933, 1, 687. doi: 10.1063/1.1749227  doi: 10.1063/1.1749227

    30. [30]

      Silvi, B. J. Phys. Chem. A 2003, 107, 3081. doi: 10.1021/jp027284p  doi: 10.1021/jp027284p

    31. [31]

      Kohout, M.; Pernal, K.; Wagner, F. R.; Grin, Y. Theor. Chem. Acc. 2005, 113, 287. doi: 10.1007/s00214-005-0671-y  doi: 10.1007/s00214-005-0671-y

    32. [32]

      Becke, A. D. J. Chem. Phys. 2000, 112, 4020. doi: 10.1063/1.480951  doi: 10.1063/1.480951

    33. [33]

      Contreras-García, J.; Recio, J. M. Theor. Chem. Acc. 2011, 128, 411. doi: 10.1007/s00214-010-0828-1  doi: 10.1007/s00214-010-0828-1

    34. [34]

      Contreras-García, J.; Martin Pendás, A.; Silvi, B.; Recio, J. M. Phys. Chem. B 2009, 113, 1068. doi: 10.1021/jp8069546  doi: 10.1021/jp8069546

    35. [35]

      Kohout, M.; Savin, A. Int. J. Quantum Chem. 1996, 60, 875. doi: 10.1002/(SICI)1097−461X(1996)60:4<875::AIDQUA10>3.0.CO;2-4  doi: 10.1002/(SICI)1097−461X(1996)60:4<875::AIDQUA10>3.0.CO;2-4

    36. [36]

      Sun, J.; Perdew, J. P.; Ruzsinszky, A. Proc. Natl. Acad. Sci. USA 2015, 112, 685. doi: 10.1073/pnas.1423145112  doi: 10.1073/pnas.1423145112

    37. [37]

      Philipsen, P. H. T.; Baerends, E. J. Phys. Rev. B 1996, 54, 5326. doi: 10.1103/PhysRevB.54.5326  doi: 10.1103/PhysRevB.54.5326

    38. [38]

      Sun, J.; Xiao, B.; Fang, Y.; Haunschild, R.; Hao, P.; Ruzsinszky, A.; Csonka, G. I.; Scuseria, E.; Perdew, J. P. Phys. Rev. Lett. 2013, 111, 106401. doi: 10.1103/PhysRevLett.111.106401  doi: 10.1103/PhysRevLett.111.106401

    39. [39]

      Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. doi: 10.1063/1.2370993  doi: 10.1063/1.2370993

    40. [40]

      Sun, J.; Haunschild, R.; Xiao, B.; Bulik, I. W.; Scuseria, G. E.; Perdew, J. P. J. Chem. Phys. 2013, 138, 044113. doi: 10.1063/1.4789414  doi: 10.1063/1.4789414

    41. [41]

      Tao, J; Perdew, J. P.; Starorerov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401. doi: 10.1103/PhysRevLett.91.146401  doi: 10.1103/PhysRevLett.91.146401

    42. [42]

      Johnson, E. R.; Becke, A. D.; Sherrill, C. D.; DiLabio, G. A. J. Chem. Phys. 2009, 131, 034111. doi: 10.1063/1.3177061  doi: 10.1063/1.3177061

    43. [43]

      Sun, J.; Remsing, R. C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; et al. Nat. Chem. 2016, 8, 831. doi: 10.1038/nchem.2535  doi: 10.1038/nchem.2535

    44. [44]

      Car, R. Nat. Chem. 2016, 8, 820. doi: 10.1038/nchem.2605  doi: 10.1038/nchem.2605

    45. [45]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Science 2008, 321, 792. doi: 10.1126/science.1158722  doi: 10.1126/science.1158722

    46. [46]

      Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Phys. Rev. Lett. 2008, 100, 146401. doi: 10.1103/PhysRevLett.100.146401  doi: 10.1103/PhysRevLett.100.146401

    47. [47]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Phys. Rev. B 2008, 77, 115123. doi: 10.1103/PhysRevB.77.115123  doi: 10.1103/PhysRevB.77.115123

    48. [48]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. J. Chem. Phys. 2008, 129, 121104. doi: 10.1063/1.2987202  doi: 10.1063/1.2987202

    49. [49]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913  doi: 10.1063/1.464913

    50. [50]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691  doi: 10.1103/PhysRevLett.49.1691

    51. [51]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    52. [52]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. J. Chem. Phys. 2007, 126, 191109. doi: 10.1063/1.2741248  doi: 10.1063/1.2741248

    53. [53]

      Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011  doi: 10.1016/j.cplett.2004.06.011

    54. [54]

      Zheng, X.; Liu, M.; Johnson, E. R.; Contreras-García, J; Yang, W. J. Chem. Phys. 2012, 137, 214106. doi: 10.1063/1.4768673  doi: 10.1063/1.4768673

    55. [55]

      Yang, W.; Zhang, Y.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172. doi: 10.1103/physrevlett.84.5172  doi: 10.1103/physrevlett.84.5172

    56. [56]

      Perdew, J. P.; Ruzsinszky, A.; Constantin, L. A.; Sun, J.; Csonka, G. I. J. Chem. Theory Comput. 2009, 5, 902. doi: 10.1021/ct800531s  doi: 10.1021/ct800531s

    57. [57]

      Ruzsinszky, A.; Perdew, J. P.; Csonka, G. I. J. Phys. Chem. A 2005, 109, 11006. doi: 10.1021/jp0534479  doi: 10.1021/jp0534479

    58. [58]

      Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Phys. Rev. Lett. 2009, 102, 066403. doi: 10.1103/PhysRevLett.102.066403  doi: 10.1103/PhysRevLett.102.066403

    59. [59]

      Cuevas-Saavedra, R.; Chakraborty, D.; Rabi, S.; Cardenas, C.; Ayers, P. W. J. Chem. Theory Comp. 2012, 8, 4081. doi: 10.1021/ct300325t  doi: 10.1021/ct300325t

    60. [60]

      Yang, D. X.; Patel, A. H. G.; Miranda-Quintana, R. A.; Heidar-Zadeh, F.; González-Espinoza, C. E.; Ayers, P. W. J. Chem. Phys. 2016, 145, 031102. doi: 10.1063/1.4958636  doi: 10.1063/1.4958636

    61. [61]

      Becke, A. D. J. Chem. Phys. 2003, 119, 2972. doi: 10.1063/1.1589733  doi: 10.1063/1.1589733

    62. [62]

      Becke, A. D. J. Chem. Phys. 2005, 122, 064101. doi: 10.1063/1.1844493  doi: 10.1063/1.1844493

    63. [63]

      Dickson, R. M.; Becke, A. D. J. Chem. Phys. 2005, 123, 111101. doi: 10.1063/1.2035587  doi: 10.1063/1.2035587

    64. [64]

      Johnson, E. R.; Contreras-García, J. J. Chem. Phys. Commun. 2011, 135, 081103. doi: 10.1063/1.3630117  doi: 10.1063/1.3630117

    65. [65]

      Shi, Z.; Boyd, R. J. J. Chem. Phys. 1988, 88, 4375. doi: 10.1063/1.454711  doi: 10.1063/1.454711

    66. [66]

      Krukau, A. V.; Scuseria, G. E.; Perdew, J. P.; Savin, A. J. Chem. Phys. 2008, 129, 124103. doi: 10.1063/1.2978377  doi: 10.1063/1.2978377

    67. [67]

      Johnson, E. R.; Mori-Sánchez, P.; Cohen, A. J.; Yang, W. J. Chem. Phys. 2008, 129, 204112. doi: 10.1063/1.3021474  doi: 10.1063/1.3021474

    68. [68]

      Armstrong, A.; Boto, R. A.; Dingwall, P.; Contreras-García, J.; Harvey, M. J.; Mason, N.; Rzepa, H. R. Chem. Sci. 2014, 5, 2057. doi: 10.1039/C3SC53416B  doi: 10.1039/C3SC53416B

    69. [69]

      Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. Org. Lett. 2006, 8, 3631. doi: 10.1021/ol061016i  doi: 10.1021/ol061016i

    70. [70]

      Wodrich, M. D.; Wannere, C. S.; Mo, Y.; Jarowski, P. D.; Houk, K. N.; Schleyer, P. v. R Chem. Eur. J. 2007, 13, 7731. doi: 10.1002/chem.200700602  doi: 10.1002/chem.200700602

    71. [71]

      Song, J. W.; Tsuneda, T.; Sato, T.; Hirao, K. Org. Lett. 2010, 12, 1440. doi: 10.1021/ol100082z  doi: 10.1021/ol100082z

    72. [72]

      Grimme, S. Org. Lett. 2010, 12, 4670. doi: 10.1021/ol1016417  doi: 10.1021/ol1016417

    73. [73]

      Steinmann, S. N.; Wodrich, M. D.; Corminboeuf, C. Theor. Chem. Acta 2010, 127, 429. doi: 10.1007/s00214-010-0818-3  doi: 10.1007/s00214-010-0818-3

    74. [74]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    75. [75]

      Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Phys. Rev. Lett. 2008, 100, 136406. doi: 10.1103/PhysRevLett.100.136406  doi: 10.1103/PhysRevLett.100.136406

    76. [76]

      Grimme, S. Angew. Chem. Int. Ed. 2006, 45, 4460. doi: 10.1002/anie.200600448  doi: 10.1002/anie.200600448

    77. [77]

      Grimme, S.; Steinmetz, M.; Korth, M. J. Org. Chem. 2007, 72, 2118. doi: 10.1021/jo062446p  doi: 10.1021/jo062446p

    78. [78]

      Karton, A.; Gruzman, D.; Martin, J. M. L. J. Phys. Chem. A 2009, 113, 8434. doi: 10.1021/jp904369h  doi: 10.1021/jp904369h

    79. [79]

      Shamov, G. A.; Budzelaar, H. M.; Schreckenbach, G. J. Chem. Theory Comput. 2010, 6, 477. doi: 10.1021/ct9005135  doi: 10.1021/ct9005135

    80. [80]

      Csonka, G. I.; Ruzsinszky, A.; Perdew, J. P.; Grimme, S. J. Chem. Theory Comput. 2008, 4, 888. doi: 10.1021/ct800003n  doi: 10.1021/ct800003n

    81. [81]

      Brittain, D. R. B.; Lin, C. Y.; Gilbert, A. T. B.; Izgorodina, E. I.; Gill, P. M. W.; Coote, M. L. Phys. Chem. Chem. Phys. 2009, 11, 1138. doi: 10.1039/b818412g  doi: 10.1039/b818412g

    82. [82]

      Becke, A. D.; Dickson, R. M. J. Chem. Phys. 1990, 92, 3610. doi: 10.1063/1.457869  doi: 10.1063/1.457869

    83. [83]

      Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114, 108. doi: 10.1063/1.1321305  doi: 10.1063/1.1321305

    84. [84]

      Johnson, E. R.; Contreras-García, J.; Yang, W. J. Chem. Theor. Comp. 2012, 8, 2626. doi: 10.1021/ct300412g  doi: 10.1021/ct300412g

    85. [85]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495  doi: 10.1002/jcc.20495

    86. [86]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision B. 01; Gaussian, Inc.: Wallingford, CT, USA, 2010.

    87. [87]

      Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J. P.; Beratan, D. N.; Yang, W. J. Chem. Theory Comput. 2011, 7, 625. doi: 10.1021/ct100641a  doi: 10.1021/ct100641a

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    10. [10]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    11. [11]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    12. [12]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    13. [13]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    14. [14]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    15. [15]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    16. [16]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    17. [17]

      Xuebing JiangSiyi WangLi ZhangXian JiangMaling Gou . Lidocaine hydrochloride loaded isomaltulose microneedles for efficient local anesthesia of the skin. Chinese Chemical Letters, 2024, 35(4): 108686-. doi: 10.1016/j.cclet.2023.108686

    18. [18]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    19. [19]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    20. [20]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

Metrics
  • PDF Downloads(8)
  • Abstract views(442)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return