Citation: HUANG Zhijuan, YU Zhinong, LI Yan, WANG Jizheng. ZnO Ultraviolet Photodetector Modified with Graphdiyne[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 1088-1094. doi: 10.3866/PKU.WHXB201801251 shu

ZnO Ultraviolet Photodetector Modified with Graphdiyne

  • Corresponding author: YU Zhinong, znyu@bit.edu.cn WANG Jizheng, jizheng@iccas.ac.cn
  • Received Date: 14 December 2017
    Revised Date: 22 January 2018
    Accepted Date: 22 January 2018
    Available Online: 25 September 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (61675024)the National Natural Science Foundation of China 61675024

  • ZnO is an ideal material for ultraviolet (UV) detection due to its wide direct-bandgap, high exciton binding energy, and high internal photoconductive gain.However, ZnO UV detectors have the disadvantages of slow response speed and low detectivity.Graphdiyne (GD) is a novel carbonaceous allotrope, and possesses excellent electronic performance in air.In this study, the metal-semiconductor-metal (MSM) structured lateral ZnO UV detectors were prepared, and GD was employed to modify the ZnO surface.The effects of GD deposited 1–3 times (viz.1T, 2T, and 3T GD) on the performance of ZnO ultraviolet detector were carefully investigated.The results show that the dark current of the bare ZnO detector is 24 μA under a bias of 10 V, while that of the graphdiyne-modified detector is ~0.34 μA (about two orders of magnitude reduction).The dark current remains almost the same for the 1T, 2T and 3T GD films.The photocurrents of 1–3T GD-modified detectors were 0.21, 0.32, 0.27 mA, respectively.The device modified with 2T GD displays the highest photocurrent, which is significantly enhanced in comparison to the unmodified device (0.08 mA) under a 365-nm UV radiation of 100 μW·cm−2.Meanwhile, the responsivity and detectivity are improved remarkably.Under a bias of 10 V, the 2T-GD-modified detector displays high responsivity of 1759 A·W−1 and detectivity of 4.23×1015 Jones.The detectivity is thus far the highest for ZnO UV detectors prepared by the sol-gel method.The improved performance of the GD-modified detector is attributed to the p-n junction formed between the GD and the ZnO film.At dark, the p-n junction is formed between the ZnO film and the GD, which greatly decreases the dark current of the detector.Under UV illumination, photogenerated holes accumulate in the GD, reducing electron-hole recombination; thus, the photocurrent is significantly increased.Furthermore, desorption and absorption of oxygen on the ZnO surface are much reduced due to the GD attached on the ZnO surface, thus improving the response speed of the detector.However, the intensive distribution of GD slightly hinders the UV absorption of ZnO thin films, reducing the responsivity of the detector.Careful optimization shows that the use of 2T GD gives the best output, and the corresponding ZnO UV detector exhibits very good performance.Overall, this study demonstrates that using GD can effectively improve the performance of ZnO UV detector.
  • 加载中
    1. [1]

      Moon, T. H.; Jeong, M. C.; Lee, W.; Myoung, J. M. Appl. Surf. Sci. 2005, 240, 280. doi:10.1016/j.apsusc.2004.06.149  doi: 10.1016/j.apsusc.2004.06.149

    2. [2]

      Lin, P.; Yan, X. Q.; Zhang, Z.; Shen, Y. W.; Zhao, Y. G.; Bai, Z. M.; Zhang, Y. ACS Appl. Mater. Inter. 2013, 5, 3671. doi:10.1021/am4008775  doi: 10.1021/am4008775

    3. [3]

      Boruah, B. D.; Mukherjee, A.; Sridhar, S.; Misra, A. ACS Appl. Mater. Inter. 2015, 7, 10606. doi:10.1021/acsami.5b02403  doi: 10.1021/acsami.5b02403

    4. [4]

      Hwang, J. D.; Wang, F. H.; Kung, C. Y.; Lai, M. J.; Chan, M. C. J. Appl. Phys. 2014, 115, 173110.doi:10.1063/1.4875657  doi: 10.1063/1.4875657

    5. [5]

      Jin, Z. W.; Gao. L.; Zhou, Q.; Wang, J. Z. Sci. Rep. 2014, 4, 4268. doi:10.1038/srep04268  doi: 10.1038/srep04268

    6. [6]

      Wang, X.; Liu, K. W.; Chen, X.; Li, B. H.; Jiang, M. M.; Zhang, Z. Z.; Zhao, H. F.; Shen, D. Z. ACS Appl. Mater. Inter. 2017, 9, 5574. doi:10.1021/acsami.6b14430  doi: 10.1021/acsami.6b14430

    7. [7]

      Zhou, H.; Mei, J.; Gui, P. B.; Tao, P.; Song, Z. H.; Wang, H.; Fang, G. J. Mat. Sci. Semicon. Proc. 2015, 38, 67. doi:10.1016/j.mssp.2015.04.005  doi: 10.1016/j.mssp.2015.04.005

    8. [8]

      Shahid, M. U.; Deen, K. M.; Ahmad, A.; Akram, M. A.; Aslam, M.; Akhtar, W. Appl. Nanosci. 2016, 6, 235. doi:10.1007/s13204-015-0425-7  doi: 10.1007/s13204-015-0425-7

    9. [9]

      Chang, H. X.; Sun, Z. H.; Ho, K. Y.; Tao, X. M.; Yan, F.; Kwok, W.; Zheng, Z. Z. Nanoscale 2011, 3, 258. doi:10.1039/c0nr00588f  doi: 10.1039/c0nr00588f

    10. [10]

      Nie, B.; Hu, J. G.; Luo, L. B.; Xie, C.; Zeng, L. H.; Lv, P.; Li, F. Z.; Jie, J. S.; Feng, M.; Wu, C. Y.; Yu, Y. Q.; Yu, S. H. Small 2013, 9, 2872. doi:10.1002/smll.201203188  doi: 10.1002/smll.201203188

    11. [11]

      Guo, D. Y.; Shan, C. X.; Qu, S. N.; Shen, D. Z. Sci. Rep. 2014, 4, 7469. doi:10.1038/srep07469  doi: 10.1038/srep07469

    12. [12]

      Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B; Li, Y. J.; Zhu, D. B. Chem. Comm. 2010, 46, 3256. dio:10.1039/b922733d  doi: 10.1039/b922733d

    13. [13]

      Jin, Z. W.; Yuan, M. J.; Li, H.; Yang, H.; Zhou, Q.; Liu, H. B.; Lan, X. Z.; Liu, M. X.; Wang, J. Z.; Sargent, E. H.; Li, Y. L. Adv. Funct. Mater. 2016, 26, 5284. doi:10.1002/adfm.201601570  doi: 10.1002/adfm.201601570

    14. [14]

      Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. ACS Nano 2011, 5, 2593. doi:10.1021/nn102472s  doi: 10.1021/nn102472s

    15. [15]

      Qian, X. M.; Liu, H. B.; Huang, C. H.; Chen, S. H.; Zhang, L.; Li, Y. J.; Wang, J. Z.; Li, Y. L. Sci. Rep. 2015, 5, 7756. doi:10.1038/srep07756  doi: 10.1038/srep07756

    16. [16]

      Chen, Y. H.; Liu, H. B.; Li, Y. L. Chin. Sci. Bull. 2016, 61, 2901.  doi: 10.1360/N972016-00483

    17. [17]

      Basak, D.; Amin, G.; Mallik, B.; Paul, G. K.; Sen, S. K. J. Cryst. Growth 2003, 256, 73. doi:10.1016/S0022-0248(03)01304-6  doi: 10.1016/S0022-0248(03)01304-6

    18. [18]

      Kumar, V.; Singh, N.; Kapoor, A.; Ntwaeaborwa, O. M.; Swart, H. C. Mater. Res. Bull. 2013, 48, 4596. doi:10.1016/j.materresbull.2013.07.061  doi: 10.1016/j.materresbull.2013.07.061

    19. [19]

      Kumar, V.; Kumar, V.; Som, S.; Yousif, A.; Singh, N.; Ntwaeaborwa, O. M.; Kapoor, A.; Swart, H. C. J. Colloid Interface Sci. 2014, 428, 8. doi:10.1016/j.jcis.2014.04.035.  doi: 10.1016/j.jcis.2014.04.035

    20. [20]

      Zhang, D. Z.; Jin, F. Y.; Gao, F. L.; Shen, L.; Su, D. M.; Zhou, J. R.; Chen, Y.; Ruan, S. P. RSC Adv. 2017, 5, 83795. doi:10.1039/c5ra17023k  doi: 10.1039/c5ra17023k

    21. [21]

      Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. D. Adv. Mater. 2002, 14, 158. doi:10.1002/1521-4095(20020116)14:23.0.CO;2-W  doi: 10.1002/1521-4095(20020116)14:23.0.CO;2-W

    22. [22]

      Takahashi, Y.; Kanamori, M.; Kondoh, A.; Minoura, H.; Ohya, Y. Jpn. J. Appl. Phys. 1994, 33, 6611. doi:10.1143/JJAP.33.6611  doi: 10.1143/JJAP.33.6611

    23. [23]

      Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. J. Appl. Phys. B 2000, 104, 4355. doi:10.1021/jp993998x  doi: 10.1021/jp993998x

    24. [24]

      Wu, J. M.; Chang, W. E. ACS Appl. Mater. Inter. 2014, 6, 14286. doi:10.1021/am503598g  doi: 10.1021/am503598g

    25. [25]

      Boruah, B. D.; Ferry, D. B.; Mukherjee, A.; Misra, A. Nanotechnology 2015, 26, 235703. doi:10.1088/0957-4484/26/23/235703  doi: 10.1088/0957-4484/26/23/235703

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    8. [8]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    12. [12]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

Metrics
  • PDF Downloads(7)
  • Abstract views(458)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return