Citation: HUANG Zhijuan, YU Zhinong, LI Yan, WANG Jizheng. ZnO Ultraviolet Photodetector Modified with Graphdiyne[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 1088-1094. doi: 10.3866/PKU.WHXB201801251 shu

ZnO Ultraviolet Photodetector Modified with Graphdiyne

  • Corresponding author: YU Zhinong, znyu@bit.edu.cn WANG Jizheng, jizheng@iccas.ac.cn
  • Received Date: 14 December 2017
    Revised Date: 22 January 2018
    Accepted Date: 22 January 2018
    Available Online: 25 September 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (61675024)the National Natural Science Foundation of China 61675024

  • ZnO is an ideal material for ultraviolet (UV) detection due to its wide direct-bandgap, high exciton binding energy, and high internal photoconductive gain.However, ZnO UV detectors have the disadvantages of slow response speed and low detectivity.Graphdiyne (GD) is a novel carbonaceous allotrope, and possesses excellent electronic performance in air.In this study, the metal-semiconductor-metal (MSM) structured lateral ZnO UV detectors were prepared, and GD was employed to modify the ZnO surface.The effects of GD deposited 1–3 times (viz.1T, 2T, and 3T GD) on the performance of ZnO ultraviolet detector were carefully investigated.The results show that the dark current of the bare ZnO detector is 24 μA under a bias of 10 V, while that of the graphdiyne-modified detector is ~0.34 μA (about two orders of magnitude reduction).The dark current remains almost the same for the 1T, 2T and 3T GD films.The photocurrents of 1–3T GD-modified detectors were 0.21, 0.32, 0.27 mA, respectively.The device modified with 2T GD displays the highest photocurrent, which is significantly enhanced in comparison to the unmodified device (0.08 mA) under a 365-nm UV radiation of 100 μW·cm−2.Meanwhile, the responsivity and detectivity are improved remarkably.Under a bias of 10 V, the 2T-GD-modified detector displays high responsivity of 1759 A·W−1 and detectivity of 4.23×1015 Jones.The detectivity is thus far the highest for ZnO UV detectors prepared by the sol-gel method.The improved performance of the GD-modified detector is attributed to the p-n junction formed between the GD and the ZnO film.At dark, the p-n junction is formed between the ZnO film and the GD, which greatly decreases the dark current of the detector.Under UV illumination, photogenerated holes accumulate in the GD, reducing electron-hole recombination; thus, the photocurrent is significantly increased.Furthermore, desorption and absorption of oxygen on the ZnO surface are much reduced due to the GD attached on the ZnO surface, thus improving the response speed of the detector.However, the intensive distribution of GD slightly hinders the UV absorption of ZnO thin films, reducing the responsivity of the detector.Careful optimization shows that the use of 2T GD gives the best output, and the corresponding ZnO UV detector exhibits very good performance.Overall, this study demonstrates that using GD can effectively improve the performance of ZnO UV detector.
  • 加载中
    1. [1]

      Moon, T. H.; Jeong, M. C.; Lee, W.; Myoung, J. M. Appl. Surf. Sci. 2005, 240, 280. doi:10.1016/j.apsusc.2004.06.149  doi: 10.1016/j.apsusc.2004.06.149

    2. [2]

      Lin, P.; Yan, X. Q.; Zhang, Z.; Shen, Y. W.; Zhao, Y. G.; Bai, Z. M.; Zhang, Y. ACS Appl. Mater. Inter. 2013, 5, 3671. doi:10.1021/am4008775  doi: 10.1021/am4008775

    3. [3]

      Boruah, B. D.; Mukherjee, A.; Sridhar, S.; Misra, A. ACS Appl. Mater. Inter. 2015, 7, 10606. doi:10.1021/acsami.5b02403  doi: 10.1021/acsami.5b02403

    4. [4]

      Hwang, J. D.; Wang, F. H.; Kung, C. Y.; Lai, M. J.; Chan, M. C. J. Appl. Phys. 2014, 115, 173110.doi:10.1063/1.4875657  doi: 10.1063/1.4875657

    5. [5]

      Jin, Z. W.; Gao. L.; Zhou, Q.; Wang, J. Z. Sci. Rep. 2014, 4, 4268. doi:10.1038/srep04268  doi: 10.1038/srep04268

    6. [6]

      Wang, X.; Liu, K. W.; Chen, X.; Li, B. H.; Jiang, M. M.; Zhang, Z. Z.; Zhao, H. F.; Shen, D. Z. ACS Appl. Mater. Inter. 2017, 9, 5574. doi:10.1021/acsami.6b14430  doi: 10.1021/acsami.6b14430

    7. [7]

      Zhou, H.; Mei, J.; Gui, P. B.; Tao, P.; Song, Z. H.; Wang, H.; Fang, G. J. Mat. Sci. Semicon. Proc. 2015, 38, 67. doi:10.1016/j.mssp.2015.04.005  doi: 10.1016/j.mssp.2015.04.005

    8. [8]

      Shahid, M. U.; Deen, K. M.; Ahmad, A.; Akram, M. A.; Aslam, M.; Akhtar, W. Appl. Nanosci. 2016, 6, 235. doi:10.1007/s13204-015-0425-7  doi: 10.1007/s13204-015-0425-7

    9. [9]

      Chang, H. X.; Sun, Z. H.; Ho, K. Y.; Tao, X. M.; Yan, F.; Kwok, W.; Zheng, Z. Z. Nanoscale 2011, 3, 258. doi:10.1039/c0nr00588f  doi: 10.1039/c0nr00588f

    10. [10]

      Nie, B.; Hu, J. G.; Luo, L. B.; Xie, C.; Zeng, L. H.; Lv, P.; Li, F. Z.; Jie, J. S.; Feng, M.; Wu, C. Y.; Yu, Y. Q.; Yu, S. H. Small 2013, 9, 2872. doi:10.1002/smll.201203188  doi: 10.1002/smll.201203188

    11. [11]

      Guo, D. Y.; Shan, C. X.; Qu, S. N.; Shen, D. Z. Sci. Rep. 2014, 4, 7469. doi:10.1038/srep07469  doi: 10.1038/srep07469

    12. [12]

      Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B; Li, Y. J.; Zhu, D. B. Chem. Comm. 2010, 46, 3256. dio:10.1039/b922733d  doi: 10.1039/b922733d

    13. [13]

      Jin, Z. W.; Yuan, M. J.; Li, H.; Yang, H.; Zhou, Q.; Liu, H. B.; Lan, X. Z.; Liu, M. X.; Wang, J. Z.; Sargent, E. H.; Li, Y. L. Adv. Funct. Mater. 2016, 26, 5284. doi:10.1002/adfm.201601570  doi: 10.1002/adfm.201601570

    14. [14]

      Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. ACS Nano 2011, 5, 2593. doi:10.1021/nn102472s  doi: 10.1021/nn102472s

    15. [15]

      Qian, X. M.; Liu, H. B.; Huang, C. H.; Chen, S. H.; Zhang, L.; Li, Y. J.; Wang, J. Z.; Li, Y. L. Sci. Rep. 2015, 5, 7756. doi:10.1038/srep07756  doi: 10.1038/srep07756

    16. [16]

      Chen, Y. H.; Liu, H. B.; Li, Y. L. Chin. Sci. Bull. 2016, 61, 2901.  doi: 10.1360/N972016-00483

    17. [17]

      Basak, D.; Amin, G.; Mallik, B.; Paul, G. K.; Sen, S. K. J. Cryst. Growth 2003, 256, 73. doi:10.1016/S0022-0248(03)01304-6  doi: 10.1016/S0022-0248(03)01304-6

    18. [18]

      Kumar, V.; Singh, N.; Kapoor, A.; Ntwaeaborwa, O. M.; Swart, H. C. Mater. Res. Bull. 2013, 48, 4596. doi:10.1016/j.materresbull.2013.07.061  doi: 10.1016/j.materresbull.2013.07.061

    19. [19]

      Kumar, V.; Kumar, V.; Som, S.; Yousif, A.; Singh, N.; Ntwaeaborwa, O. M.; Kapoor, A.; Swart, H. C. J. Colloid Interface Sci. 2014, 428, 8. doi:10.1016/j.jcis.2014.04.035.  doi: 10.1016/j.jcis.2014.04.035

    20. [20]

      Zhang, D. Z.; Jin, F. Y.; Gao, F. L.; Shen, L.; Su, D. M.; Zhou, J. R.; Chen, Y.; Ruan, S. P. RSC Adv. 2017, 5, 83795. doi:10.1039/c5ra17023k  doi: 10.1039/c5ra17023k

    21. [21]

      Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. D. Adv. Mater. 2002, 14, 158. doi:10.1002/1521-4095(20020116)14:23.0.CO;2-W  doi: 10.1002/1521-4095(20020116)14:23.0.CO;2-W

    22. [22]

      Takahashi, Y.; Kanamori, M.; Kondoh, A.; Minoura, H.; Ohya, Y. Jpn. J. Appl. Phys. 1994, 33, 6611. doi:10.1143/JJAP.33.6611  doi: 10.1143/JJAP.33.6611

    23. [23]

      Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. J. Appl. Phys. B 2000, 104, 4355. doi:10.1021/jp993998x  doi: 10.1021/jp993998x

    24. [24]

      Wu, J. M.; Chang, W. E. ACS Appl. Mater. Inter. 2014, 6, 14286. doi:10.1021/am503598g  doi: 10.1021/am503598g

    25. [25]

      Boruah, B. D.; Ferry, D. B.; Mukherjee, A.; Misra, A. Nanotechnology 2015, 26, 235703. doi:10.1088/0957-4484/26/23/235703  doi: 10.1088/0957-4484/26/23/235703

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    3. [3]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    8. [8]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    11. [11]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    12. [12]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    13. [13]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    14. [14]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    17. [17]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(7)
  • Abstract views(534)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return