Advanced Progress in the Synthesis of Graphdiyne
- Corresponding author: ZHANG Jin, jinzhang@pku.edu.cn LIU Zhongfan, zfliu@pku.edu.cn
Citation: ZHOU Jingyuan, ZHANG Jin, LIU Zhongfan. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 977-991. doi: 10.3866/PKU.WHXB201801243
Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
doi: 10.1038/nmat1849
Krätschmer, W.; Huffman, D. R. Carbon 1992, 30, 1143. doi: 10.1016/0008-6223(92)90057-4
doi: 10.1016/0008-6223(92)90057-4
Lijima, S.; Ichihashi, T. Nature 1993, 364, 737. doi: 10.1038/364737d0
doi: 10.1038/364737d0
Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687. doi: 10.1063/1.453405
doi: 10.1063/1.453405
Ivanovskii, A. L. Prog. Solid State Chem. 2013, 41, 1. doi: 10.1016/j.progsolidstchem.2012.12.001
doi: 10.1016/j.progsolidstchem.2012.12.001
Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Phys. Rev. Lett. 2012, 108, 086804. doi: 10.1016/j.progsolidstchem.2012.12.001
doi: 10.1016/j.progsolidstchem.2012.12.001
Chen, J.; Xi, J.; Wang, D.; Shuai, Z. J. Phys. Chem. Lett. 2013, 4, 1443. doi: 10.1103/PhysRevLett.108.086804
doi: 10.1103/PhysRevLett.108.086804
Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. ACS Nano 2013, 7, 1504. doi: 10.1021/nn305288z
doi: 10.1021/nn305288z
Bhaskar, A.; Guda, R.; Haley, M. M.; Theodore Ⅲ J. Am. Chem. Soc. 2006, 128, 13972. doi: 10.1021/ja062709x
doi: 10.1021/ja062709x
Qi, H.; Yu, P.; Wang, Y.; Han, G.; Liu, H.; Yi, Y.; Li, Y.; Mao, L. J. Am. Chem. Soc. 2015, 137, 5260. doi: 10.1021/ja5131337
doi: 10.1021/ja5131337
Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem. Int. Ed. 1997, 36, 836. doi: 10.1002/anie.199708361
doi: 10.1002/anie.199708361
Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 1998, 58, 11009. doi: 10.1103/PhysRevB.58.11009
doi: 10.1103/PhysRevB.58.11009
Fasolino, A.; Los, J. H.; Katsnelson, M. I. Nat. Mater. 2007, 6, 858. doi: 10.1038/nmat2011
doi: 10.1038/nmat2011
Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. Solid State Commun. 2007, 143, 101. doi: 10.1016/j.ssc.2007.02.047
doi: 10.1016/j.ssc.2007.02.047
Cranford, S. W.; Buehler, M. J. Carbon 2011, 49, 4111. doi: 10.1016/j.carbon.2011.05.024
doi: 10.1016/j.carbon.2011.05.024
Zheng, Q.; Luo, G.; Liu, Q.; Quhe, R.; Zheng, J.; Tang, K.; Gao, Z.; Nagase, S.; Lu, J. Nanoscale 2012, 4, 3990. doi: 10.1039/C2NR12026G
doi: 10.1039/C2NR12026G
Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. J. Am. Chem. Soc. 2017, 139, 3145. doi: 10.1021/jacs.6b12776
doi: 10.1021/jacs.6b12776
Li, C.; Lu, X.; Han, Y.; Tang, S.; Ding, Y.; Liu, R.; Bao, H.; Li, Y.; Luo, J.; Lu, T. Nano Res. 2017, doi: 10.1007/s12274-017-1789-7
doi: 10.1007/s12274-017-1789-7
Jiao, Y.; Du, A.; Hankel, M.; Zhu, Z.; Rudolph, V.; Smith, S. C. Chem. Commun. 2011, 47, 11843. doi: 10.1039/C1CC15129K
doi: 10.1039/C1CC15129K
Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951. doi: 10.1021/jp212181h
doi: 10.1021/jp212181h
Luo, G.; Qian X. Liu H.; Qin R.; Zhou J.; Li L.; Gao Z.; Wang E.; Mei W.; Lu J.; Li Y.; Nagase S. Phys. Rev. B 2011, 84, 075439. doi:/10.1103/PhysRevB.84.075439
doi: 10.1103/PhysRevB.84.075439
Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. ACS Nano 2011, 5, 2593. doi: 10.1021/nn102472s
doi: 10.1021/nn102472s
Pei, Y. Phys. B: Condens. Matter 2012, 407, 4436. doi: 10.1016/j.physb.2012.07.026
doi: 10.1016/j.physb.2012.07.026
Yue, Q.; Chang, S.; Kang, J.; Qin, S.; Li, J. J. Phys. Chem. C 2013, 117, 14804. doi: 10.1021/jp4021189
doi: 10.1021/jp4021189
Chen, Y.; Liu, H.; Li, Y. Chin. Sci. Bull. 2016, 61, 2901. doi: 10.1306/N972016-00483
doi: 10.1306/N972016-00483
Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Acc. Chem. Res. 2017, 50, 2470. doi: 10.1021/acs.accounts.7b00205
doi: 10.1021/acs.accounts.7b00205
Sun, C.; Searles, D. J. J. Phys. Chem. C 2012, 116, 26222. doi: 10.1021/jp309638z
doi: 10.1021/jp309638z
Huang, C.; Zhang, S.; Liu, H; Li, Y.; Cui, G.; Li, Y. Nano Energy 2015, 11, 481. doi: 10.1016/j.nanoen.2014.11.036
doi: 10.1016/j.nanoen.2014.11.036
Du, H.; Yang, H.; Huang, C. He, J.; Liu, H.; Li, Y. Nano Energy, 2016, 22, 615. doi: 10.1016/j.nanoen.2016.02.052
doi: 10.1016/j.nanoen.2016.02.052
Ren, H.; Shao, H. Zhang, L.; Guo, D.; Jin, Q.; Yu, R.; Wang, Y.; Zhao, H.; Wang, D. Adv. Energy Mater. 2015, 5, 1500296. doi: 10.1002/aenm.201500296
doi: 10.1002/aenm.201500296
Wang, S.; Yi, L.; Halpert, J. E.; Lai, X.; Liu, Y.; Cao, H.; Yu, , R.; Wang, D.; Li, Y. Small 2011, 8, 265. doi: 10.1002/smll.201101686
doi: 10.1002/smll.201101686
Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L.; Zhang, H.; Gao, M.; Zhao, H.; Hu, W.; Li, Y.; Wang, D. Adv. Mater. 2017, 29, 1606755. doi: 10.1002/adma.201606755
doi: 10.1002/adma.201606755
Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572. doi: 10.1039/C3CS60388A
doi: 10.1039/C3CS60388A
Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 46, 3256. doi: 10.1039/B922733D
doi: 10.1039/B922733D
Diederich, F.; Kivala, M. Adv. Mater. 2010, 22, 803. doi: 10.1002/adma.200902623
doi: 10.1002/adma.200902623
Bell, M. L.; Chiechi, R. C.; Johnson, C. A.; Kimball, D. B.; Matzger, A. J.; Brad Wan, W.; Weakley, T. J. R.; Haley, M. M. Tetrahedron 2001, 57, 3507. doi: 10.1016/S0040-4020(01)00229-0
doi: 10.1016/S0040-4020(01)00229-0
Wan, W. B.; Haley, M. M. J. Org. Chem. 2001, 66, 3893. doi: 10.1021/jo010183n
doi: 10.1021/jo010183n
Haley, M. M.; Bell, M. L.; English, J. J.; Johnson, C. A.; Weakley, T. J. R. J. Am. Chem. Soc 1997, 119, 2956. doi: 10.1021/ja964048h
doi: 10.1021/ja964048h
Marsden, J. A.; Haley, M. M. J. Org. Chem. 2005, 70, 10213. doi: 10.1021/jo050926v
doi: 10.1021/jo050926v
Haley, M. M. Pure Appl. Chem. 2008, 80, 519. doi: 10.1351/pac200880030519
doi: 10.1351/pac200880030519
Nishinaga, T.; Miyata, Y.; Nodera, N.; Komatsu, K. Tetrahedron 2004, 60, 3375. doi: 10.1016/j.tet.2004.02.041
doi: 10.1016/j.tet.2004.02.041
Sarkar, A.; Pak, J. J.; Rayfield, G. W.; Haley, M. M. J. Mater. Chem. 2001, 11, 2943. doi: 10.1039/B107182N
doi: 10.1039/B107182N
Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org. Chem. 2003, 2003, 2355. doi: 10.1002/ejoc.200200630
doi: 10.1002/ejoc.200200630
Wan, W. B.; Br, S. C.; Pak, J. J.; Haley, M. M. Chem. Eur. J. 2015, 6, 2044. doi: 10.1002/1521-3765(20000602)6:11 < 2044::AID-CHEM2044 > 3.0.CO; 2-Y
doi: 10.1002/1521-3765(20000602)6:11<2044::AID-CHEM2044>3.0.CO;2-Y
Wang, H.; Zhang, H.; Chi, L. Acta Phys. -Chim. Sin. 2016, 32, 154.
doi: 10.3866/PKU.WHXB201512041
Klappenberger, F.; Zhang, Y. Q.; Björk, J.; Klyatskaya, S.; Ruben, M.; Barth, J. V. Acc. Chem. Res. 2015, 48, 2140. doi: 10.1021/acs.accounts.5b00174
doi: 10.1021/acs.accounts.5b00174
Gao, H. Y.; Wagner, H.; Zhong, D.; Franke, J. H.; Studer, A.; Fuchs, H. Angew. Chem. Int. Ed. 2013, 52, 4024. doi: 10.1002/anie.201208597
doi: 10.1002/anie.201208597
Gao, H. Y.; Zhong, D.; Mönig, H.; Wagner, H.; Held, P. A.; Timmer, A.; Studer, A.; Fuchs, H. J. Phys. Chem. C 2014, 118, 6272. doi: 10.1021/jp411889e
doi: 10.1021/jp411889e
Zhang, Y. Q.; Kepcija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F. Nat. Commun. 2012, 3, 1286. doi: 10.1038/ncomms2291
doi: 10.1038/ncomms2291
Cirera, B.; Zhang, Y. Q.; Björk, J.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Barth, J. V.; Klappenberger, F. Nano Lett. 2014, 14, 1891. doi: 10.1021/nl4046747
doi: 10.1021/nl4046747
Liu, J.; Ruffieux, P.; Feng, X.; Mullen, K.; Fasel, R. Chem. Commun. 2014, 50, 11200. doi: 10.1039/C4CC02859G
doi: 10.1039/C4CC02859G
Eichhorn, J.; Heckl, W. M.; Lackinger, M. Chem. Commun. 2013, 49, 2900. doi: 10.1039/C3CC40444G
doi: 10.1039/C3CC40444G
Yuan, Q.; Ding, F. Nanoscale 2014, 6, 12727. doi: 10.1039/C4NR03757J
doi: 10.1039/C4NR03757J
Kepčija, N.; Zhang, Y. Q.; Kleinschrodt, M.; Björk, J.; Klyatskaya, S.; Klappenberger, F.; Ruben, M.; Barth, J. V. J. Phys. Chem. C 2013, 117, 3987. doi: 10.1021/jp310606r
doi: 10.1021/jp310606r
Zhang, Y. Q.; J, Björk, J.; Weber, P.; Hellwig, R.; Diller, K.; Papageorgiou, A. C.; Oh, S. C.; Fischer, S.; Allegretti, F.; Klyatskaya, S.; Ruben, M.; Barth, J. V.; Klappenberger, F. J. Phys. Chem. C 2015, 119, 9669. doi: 10.1021/acs.jpcc.5b02955
doi: 10.1021/acs.jpcc.5b02955
Gao, H. Y.; Franke, J. H.; Wagner, H.; Zhong, D.; Held, P. A.; Studer, A.; Fuchs, H. J. Phys. Chem. C 2013, 117, 18595. doi: 10.1021/jp406858p
doi: 10.1021/jp406858p
Dong, L.; Liu, P. N.; Lin, N. Acc. Chem. Res. 2015, 48, 2765. doi: 10.1021/acs.accounts.5b00160
doi: 10.1021/acs.accounts.5b00160
Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. Chem. Commun. 2014, 50, 7680. doi: 10.1039/C4CC02757D
doi: 10.1039/C4CC02757D
Sun, Q.; Cai, L.; Ding, Y.; Xie, L.; Zhang, C.; Tan, Q.; Xu, W. Angew. Chem. Int. Ed. 2015, 54, 4549. doi: 10.1002/anie.201412307
doi: 10.1002/anie.201412307
Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. ACS Nano 2016, 10, 7023. doi: 10.1021/acsnano.6b03048
doi: 10.1021/acsnano.6b03048
Liu, R.; Gao, X.; Zhou, J.; Xu, H.; Li, Z.; Zhang, S.; Xie, Z.; Zhang, J.; Liu, Z. Adv. Mater. 2017, 29, 1604665. doi: 10.1002/adma.201604665
doi: 10.1002/adma.201604665
Huang, C.; Zhang, S.; Liu, H.; Li, Y.; Cui, G.; Li, Y. Nano Energy 2015, 11, 481. doi: 10.1016/j.nanoen.2014.11.036
doi: 10.1016/j.nanoen.2014.11.036
Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; Fang, J.; Li, Y. Nano Lett. 2015, 15, 2756. doi: 10.1021/acs.nanolett.5b00787
doi: 10.1021/acs.nanolett.5b00787
Li, J.; Gao, X.; Jiang, X.; Li, X. B.; Liu, Z.; Zhang, J.; Tung, C. H.; Wu, L. Z. ACS Catal. 2017, 7, 5209. doi: 10.1021/acscatal.7b01781
doi: 10.1021/acscatal.7b01781
Huang, C. S.; Li, Y. L. Acta Phys. -Chim. Sin. 2016, 32, 1314.
doi: 10.3866/PKU.WHXB201605035
Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H. J. Am. Chem. Soc. 2014, 136, 14357. doi: 10.1021/ja507619d
doi: 10.1021/ja507619d
Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462. doi: 10.1021/ja312380b
doi: 10.1021/ja312380b
Lahiri, N.; Lotfizadeh, N.; Tsuchikawa, R.; Deshpande, V. V.; Louie, J. J. Am. Chem. Soc. 2017, 139, 19. doi: 110.1021/jacs.6b09889
doi: 10.1021/jacs.6b09889
Sakamoto, R.; Hoshiko, K.; Liu, Q.; Yagi, T.; Nagayama, T.; Kusaka, S.; Tsuchiya, M.; Kitagawa, Y.; Wong, W. Y.; Nishihara, H. Nat. Commun. 2015, 6, 6713. doi: 10.1038/ncomms7713
doi: 10.1038/ncomms7713
Sakamoto, R.; Yagi, T.; Hoshiko, K.; Kusaka, S.; Matsuoka, R.; Maeda, H.; Liu, Z.; Liu, Q.; Wong, W. Y.; Nishihara, H. Angew. Chem. Int. Ed. 2017, 56, 3526. doi: 10.1002/anie.201611785
doi: 10.1002/anie.201611785
Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C. A.; Yi, Y.; Sun, Y.; Xu, W.; Zhu, D. Nat. Commun. 2015, 6, 7408. doi: 10.1038/ncomms8408
doi: 10.1038/ncomms8408
Hoshiko, K.; Kambe, T.; Sakamoto, R.; Takada, K.; Nishihara, H. Chem. Lett. 2013, 43, 252. doi: 10.1246/cl.130882
doi: 10.1246/cl.130882
Dai, W.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y.; Schlüter, A. D.; Zhang, W. Angew. Chem. Int. Ed. 2016, 55, 213. doi: 10.1002/anie.201508473
doi: 10.1002/anie.201508473
Li, G.; Li, Y.; Qian, X.; Liu, H.; Lin, H.; Chen, N.; Li, Y. J. Phys. Chem. C 2011, 115, 2611. doi: 10.1021/jp107996f
doi: 10.1021/jp107996f
Qian, X.; Ning, Z.; Li, Y.; Liu, H.; Ouyang, C.; Chen, Q.; Li, Y. Dalton Trans. 2012, 41, 730. doi: 10.1039/C1DT11641J
doi: 10.1039/C1DT11641J
Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J.; Liu, Z. J. Am. Chem. Soc. 2015, 137, 7596. doi: 10.1021/jacs.5b04057
doi: 10.1021/jacs.5b04057
Liu, R.; Zhou, J.; Gao, X.; Li, J.; Xie, Z.; Li, Z.; Zhang, S.; Tong, L.; Zhang, J.; Liu, Z. Adv. Electron. Mater. 2017, 1700122. doi: 10.1002/aelm.201700122
doi: 10.1002/aelm.201700122
Gao, X.; Ren, H.; Zhou, J.; Du, R.; Yin, C.; Liu, R.; Peng, H.; Tong, L.; Liu, Z.; Zhang, J. Chem. Mater. 2017, 29, 5777. doi: 10.1021/acs.chemmater.7b01838
doi: 10.1021/acs.chemmater.7b01838
Gao, X.; Zhou, J.; Du, R.; Xie, Z.; Deng, S.; Liu, R.; Liu, Z.; Zhang, J. Adv. Mater. 2016, 28, 168. doi: 10.1002/adma.201504407
doi: 10.1002/adma.201504407
Kim, K.; Santos, E. J. G.; Lee, T. H.; Nishi, Y.; Bao, Z. Small 2015, 11, 2037. doi: 10.1002/smll.201403006
doi: 10.1002/smll.201403006
Kim, K.; Lee, T. H.; Santos, E. J. G.; Jo, P. S.; Salleo, A.; Nishi, Y.; Bao, Z. ACS Nano 2015, 9, 5922. doi: 10.1021/acsnano.5b00581
doi: 10.1021/acsnano.5b00581
Kang, S. J.; Lee, G. H.; Yu, Y. J.; Zhao, Y.; Kim, B.; Watanabe, K.; Taniguchi, T.; Hone, J.; Kim, P.; Nuckolls, C. Adv. Funct. Mater. 2014, 24, 5157. doi: 10.1002/adfm.201400348
doi: 10.1002/adfm.201400348
Liu, X. H.; Guan, C. Z.; Wang, D.; Wan, L. J. Adv. Mater. 2014, 26, 6912. doi: 10.1002/adma.201305317
doi: 10.1002/adma.201305317
Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228. doi: 10.1126/science.1202747
doi: 10.1126/science.1202747
Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Nano Lett. 2005, 5, 713. doi: 10.1021/nl050133o
doi: 10.1021/nl050133o
Green, A. A.; Hersam, M. C. Nano Lett. 2009, 9, 4031. doi: 10.1021/nl902200b
doi: 10.1021/nl902200b
Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Nat. Commun. 2011, 2, 309. doi: 10.1038/ncomms1313
doi: 10.1038/ncomms1313
Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Chem. Soc. Rev. 2013, 42, 6634. doi: 10.1039/C3CS60044K
doi: 10.1039/C3CS60044K
Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. J. Am. Chem. Soc. 2013, 135, 10470. doi: 10.1021/ja403464h
doi: 10.1021/ja403464h
Wu, B.; Li, M.; Xiao, S.; Qu, Y.; Qiu, X.; Liu, T.; Tian, F. Li, H.; Xiao, S. Nanoscale 2017, 9, 11939. doi: 10.1039/C7NR02247F
doi: 10.1039/C7NR02247F
Kabalka, G. W.; Wang, L.; Pagni, R. M. Synlett 2001, 2001, 0108. doi: 10.1055/s-2001-9726
doi: 10.1055/s-2001-9726
Schmidt, R.; Thorwirth, R.; Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopf, H. Chem. Eur. J. 2011, 17, 8129. doi: 10.1002/chem.201100604
doi: 10.1002/chem.201100604
Zuo, Z.; Shang, H.; Chen, Y.; Li, J.; Liu, H.; Li, Y.; Li, Y. Chem. Commun. 2017, 53, 8074. doi: 10.1039/C7CC03200E
doi: 10.1039/C7CC03200E
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
Hongyan Chen , Yajun Hou , Shui Hu , Zhuoxun Wei , Fang Zhu , Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Cheng Rong , Jiang Jiang , Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035
Yinuo Wu , Jiantao Ye , Xie Zhou , Yu Qian , Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077
Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Jin Yan , Chengxia Tong , Yajie Li , Yue Gu , Xuejian Qu , Shigang Wei , Wanchun Zhu , Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002