Citation: LU Xiuli, HAN Yingying, LU Tongbu. Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 1014-1028. doi: 10.3866/PKU.WHXB201801171 shu

Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions

  • Corresponding author: LU Tongbu, lutongbu@tjut.edu.cn
  • Received Date: 27 December 2017
    Revised Date: 12 January 2018
    Accepted Date: 14 January 2017
    Available Online: 17 September 2018

    Fund Project: the National Natural Science Foundation of China 21790052the National Natural Science Foundation of China 21331007The project was supported by the National Natural Science Foundation of China (21790052, 21331007)

  • Graphdiyne(GDY) is a new booming carbon material with a highly π-conjugatedstructure that consists of sp-and sp2-hybridizedcarbon atoms. Due to the diverse compositions of the carbon atoms, GDYs can bedivided into several forms based on their structure and periodicity. Until2010, γ-GDY has been successfully synthesized and becomes a new member of thecarbon family. Many researchers have subsequently devoted their attention tothe study of GDY. Compared to the traditional carbon materials, GDY exhibits aunique carbon network and electronic structure, thereby attracting considerableattention in a variety of fields. With the development of its syntheticchemistry, many types of GDY with different structures have been synthesizedand characterized. The characterization of their micromorphology is crucial forstudying the synthesis procedure and understanding the properties of GDYmaterials. At present, the developed method can characterize GDY morphology, crystal structure, and thechemical bonds of the carbon atoms. Specifically, the morphology and thicknessof GDY can be evaluated by scanning electron microscopy, transmission electronmicroscopy, and atomic force microscopy. The crystal structure can beinvestigated using X-ray diffraction and high-resolution transmission electronmicroscopy. The chemical bonding of the carbon atoms can be analyzed by Ramanspectroscopy, X-ray photoelectron spectroscopy, Fourier transforminfrared (FT-IR) spectroscopy, C-13 nuclear magnetic resonance (13C NMR), UV-visible (UV-Vis) absorption spectroscopy, etc. However, methods for therapid and nondestructive characterization of the highly crystalline graphdiyneare still absent, restricting the study of the intrinsic properties of GDY. Dueto the unique electronic and porous structure of GDY, it has been the focus ofextensive investigations in the field of catalysis. As a result of itsfavorable electronic structure and good capability for transferringphotoexcited electrons and holes, GDY can enhance light absorption andfacilitate the separation of photoexcited charge carriers in semiconductors andthereby significantly promote their photocatalytic performance. In addition, GDY can be modified using foreign elements, providing an ideal platform toprepare a highly active catalyst for the hydrogen evolution reaction, oxygenevolution reaction, oxygen reduction reaction, etc. Furthermore, GDY can besynthesized on arbitrary substrates in a three-dimensional nanosheet arraystructure, which can provide a large number of channels for the transfer ofelectrons and a large contact area with the reactant, which is beneficial inelectrocatalytic reactions. This review focused on the recent developments incharacterization methods as well as the photo and electrocatalysis applicationsof GDY, and elaborated the opportunities and challenges for the investigationof GDY in the future.
  • 加载中
    1. [1]

      Bunz, U. H. F.; Rubin, Y.; Tobe, Y. Chem. Soc. Rev. 1999, 28, 107. doi: 10.1039/A708900G  doi: 10.1039/A708900G

    2. [2]

      Li, Z.; Liu, Z.; Sun, H.; Gao, C. Chem. Rev. 2015, 115, 7046. doi: 10.1021/acs.chemrev.5b00102  doi: 10.1021/acs.chemrev.5b00102

    3. [3]

      Griese, S.; Kampouris, D. K.; Kadara, R. O.; Banks, C. E. Electroanal. 2008, 20, 1507. doi: 10.1002/elan.200804238  doi: 10.1002/elan.200804238

    4. [4]

      Hu, L.; Hecht, D. S.; Grüner, G. Chem. Rev. 2010, 110, 5790. doi: 10.1021/cr9002962  doi: 10.1021/cr9002962

    5. [5]

      Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464. doi: 10.1021/acs.chemrev.5b00620  doi: 10.1021/acs.chemrev.5b00620

    6. [6]

      Heister, E.; Brunner, E. W.; Dieckmann, G. R.; Jurewicz, I.; Dalton, A. B. ACS Appl. Mater. Interfaces 2013, 5, 1870. doi: 10.1021/am302902d  doi: 10.1021/am302902d

    7. [7]

      Liu, M.; Zhang, R.; Chen, W. Chem. Rev. 2014, 114, 5117. doi: 10.1021/cr400523y  doi: 10.1021/cr400523y

    8. [8]

      Hu, X.; Zhou, Q. Chem. Rev. 2013, 113, 3815. doi: 10.1021/cr300045n  doi: 10.1021/cr300045n

    9. [9]

      Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687. doi:10.1063/1.453405  doi: 10.1063/1.453405

    10. [10]

      Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem. Int. Ed. 1997, 36, 836. doi: 10.1002/anie.199708361  doi: 10.1002/anie.199708361

    11. [11]

      Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 46, 3256. doi:10.1039/B922733D  doi: 10.1039/B922733D

    12. [12]

      Du, H.; Zhang, Z.; He, J.; Cui, Z.; Chai, J.; Ma, J.; Yang, Z.; Huang, C.; Cui, G. Small 2017, 13, 1702277. doi: 10.1002/smll.201702277  doi: 10.1002/smll.201702277

    13. [13]

      Wang, K.; Wang, N.; He, J.; Yang, Z.; Shen, X.; Huang, C. Electrochim. Acta 2017, 253, 506. doi: 10.1016/j.electacta.2017.09.101  doi: 10.1016/j.electacta.2017.09.101

    14. [14]

      Du, H.; Yang, H.; Huang, C.; He, J.; Liu, H.; Li, Y. Nano Energy 2016, 22, 615. doi:10.1016/j.nanoen.2016.02.052  doi: 10.1016/j.nanoen.2016.02.052

    15. [15]

      He, J.; Bao, K.; Cui, W.; Yu, J.; Huang, C.; Shen, X.; Cui, Z.; Wang, N. Chem. Eur. J. 2017. doi: 10.1002/chem.201704581  doi: 10.1002/chem.201704581

    16. [16]

      Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Acc. Chem. Res. 2017, 50, 2470. doi: 10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    17. [17]

      Chen, Z.; Wen, Z.; Jiang, Q. J. Phys. Chem. C 2017, 121, 3463. doi: 10.1021/acs.jpcc.6b12434  doi: 10.1021/acs.jpcc.6b12434

    18. [18]

      Qi, H.; Yu, P.; Wang, Y.; Han, G.; Liu, H.; Yi, Y.; Li, Y.; Mao, L. J. Am. Chem. Soc. 2015, 137, 5260. doi: 10.1021/ja5131337  doi: 10.1021/ja5131337

    19. [19]

      Dang, Y.; Guo, W.; Zhao, L.; Zhu, H. ACS Appl. Mater. Interfaces 2017, 9, 30002. doi: 10.1021/acsami.7b10836  doi: 10.1021/acsami.7b10836

    20. [20]

      Meng, Z.; Zhang, X.; Zhang, Y.; Gao, H.; Wang, Y.; Shi, Q.; Rao, D.; Liu, Y.; Deng, K.; Lu, R. ACS Appl. Mater. Interfaces 2016, 8, 28166. doi: 10.1021/acsami.6b08662  doi: 10.1021/acsami.6b08662

    21. [21]

      Wang, C.; Yu, P.; Guo, S.; Mao, L.; Liu, H.; Li, Y. Chem. Commun. 2016, 52, 5629. doi:10.1039/C6CC01856D  doi: 10.1039/C6CC01856D

    22. [22]

      Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L.; Zhang, H.; Gao, M. Adv. Mater. 2017, 29, 1606755. doi: 10.1002/adma.201606755  doi: 10.1002/adma.201606755

    23. [23]

      Liu, R.; Zhou, J.; Gao, X.; Li, J.; Xie, Z.; Li, Z.; Zhang, S.; Tong, L.; Zhang, J.; Liu, Z. Adv. Electron. Mater. 2017, 3, 1700122. doi: 10.1002/aelm.201700122  doi: 10.1002/aelm.201700122

    24. [24]

      Gao, X.; Zhou, J.; Du, R.; Xie, Z.; Deng, S.; Liu, R.; Liu, Z.; Zhang, J. Adv. Mater. 2016, 28, 168. doi: 10.1002/adma.201504407  doi: 10.1002/adma.201504407

    25. [25]

      Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J. J. Am. Chem. Soc. 2015, 137, 7596. doi: 10.1021/jacs.5b04057  doi: 10.1021/jacs.5b04057

    26. [26]

      Li, J.; Gao, X.; Liu, B.; Feng, Q.; Li, X.-B.; Huang, M.-Y.; Liu, Z.; Zhang, J.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2016, 138, 3954. doi: 10.1021/jacs.5b12758  doi: 10.1021/jacs.5b12758

    27. [27]

      Liu, R.; Gao, X.; Zhou, J.; Xu, H.; Li, Z.; Zhang, S.; Xie, Z.; Zhang, J.; Liu, Z. Adv. Mater. 2017, 29, 1604665. doi: 10.1002/adma.201604665  doi: 10.1002/adma.201604665

    28. [28]

      Li, C.; Lu, X.; Han, Y.; Tang, S.; Ding, Y.; Liu, R.; Bao, H.; Li, Y.; Luo, J.; Lu, T. Nano Res. 2017. doi: 10.1007/s12274-017-1789-7  doi: 10.1007/s12274-017-1789-7

    29. [29]

      Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. J. Am. Chem. Soc. 2017, 139, 3145. doi: 10.1021/jacs.6b12776  doi: 10.1021/jacs.6b12776

    30. [30]

      He, J.; Wang, N.; Cui, Z.; Du, H.; Fu, L.; Huang, C.; Yang, Z.; Shen, X.; Yi, Y.; Tu, Z. Nat. Commun. 2017, 8, 1172. doi: 10.1038/s41467-017-01202-2  doi: 10.1038/s41467-017-01202-2

    31. [31]

      Li, J.; Xie, Z.; Xiong, Y.; Li, Z.; Huang, Q.; Zhang, S.; Zhou, J.; Liu, R.; Gao, X.; Chen, C. Adv. Mater. 2017, 29, 1700421. doi: 10.1002/adma.201700421  doi: 10.1002/adma.201700421

    32. [32]

      Zhang, S.; Wang, J.; Li, Z.; Zhao, R.; Tong, L.; Liu, Z.; Zhang, J.; Liu, Z. J. Phys. Chem. C 2016, 120, 10605. doi: 10.1021/acs.jpcc.5b12388  doi: 10.1021/acs.jpcc.5b12388

    33. [33]

      Wang, N.; He, J.; Tu, Z.; Zhao, F.; Li, X.; Huang, C.; Wang, K.; Jiu, T.; Yi, Y.; Li, Y. Angew. Chem. Int. Ed. 2017, 56, 10740. doi: 10.1002/anie.201704779  doi: 10.1002/anie.201704779

    34. [34]

      Ren, H.; Shao, H.; Zhang, L.; Guo, D.; Jin, Q.; Yu, R.; Wang, L.; Li, Y.; Wang, Y.; Zhao, H. Adv. Energy Mater. 2015, 5, 1500296. doi: 10.1002/aenm.201500296  doi: 10.1002/aenm.201500296

    35. [35]

      Zhong, J.; Wang, J.; Zhou, J.-G.; Mao, B.-H.; Liu, C.-H.; Liu, H.-B.; Li, Y.-L.; Sham, T.-K.; Sun, X.-H.; Wang, S.-D. J. Phys. Chem. C 2013, 117, 5931. doi: 10.1021/jp310013z  doi: 10.1021/jp310013z

    36. [36]

      Wang, S. S.; Liu, H. B.; Kan, X. N.; Wang, L.; Chen, Y. H.; Su, B.; Li, Y. L.; Jiang, L. Small 2017, 13, 1602265. doi: 10.1002/smll.201602265  doi: 10.1002/smll.201602265

    37. [37]

      Zheng, Q.; Luo, G.; Liu, Q.; Quhe, R.; Zheng, J.; Tang, K.; Gao, Z.; Nagase, S.; Lu, J. Nanoscale 2012, 4, 3990. doi:10.1039/C2NR12026G  doi: 10.1039/C2NR12026G

    38. [38]

      Enyashin, A. N.; Ivanovskii, A. L. Phys. Status Solidi B 2011, 248, 1879. doi: 10.1002/pssb.201046583  doi: 10.1002/pssb.201046583

    39. [39]

      Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951. doi: 10.1021/jp212181h  doi: 10.1021/jp212181h

    40. [40]

      Jiao, Y.; Du, A.; Hankel, M.; Zhu, Z.; Rudolph, V.; Smith, S. C. Chem. Commun. 2011, 47, 11843. doi: 10.1039/C1CC15129K  doi: 10.1039/C1CC15129K

    41. [41]

      Luo, G.; Qian, X.; Liu, H.; Qin, R.; Zhou, J.; Li, L.; Gao, Z.; Wang, E.; Mei, W.-N.; Lu, J. Phys. Rev. B 2011, 84, 075439. doi: 10.1103/PhysRevB.84.075439  doi: 10.1103/PhysRevB.84.075439

    42. [42]

      Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. ACS Nano 2011, 5, 2593. doi: 10.1021/nn102472s  doi: 10.1021/nn102472s

    43. [43]

      Wang, S.; Yi, L.; Halpert, J. E.; Lai, X.; Liu, Y.; Cao, H.; Yu, R.; Wang, D.; Li, Y. Small 2012, 8, 265. doi: 10.1002/smll.201101686  doi: 10.1002/smll.201101686

    44. [44]

      Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. ACS Nano 2013, 7, 1504. doi: 10.1021/nn305288z  doi: 10.1021/nn305288z

    45. [45]

      Liu Yuanyuan. Acta Chim Sinica 2013, 71, 260. WOS:000315932100018  doi: 10.6023/A12090705

    46. [46]

      Thangavel, S.; Krishnamoorthy, K.; Krishnaswamy, V.; Raju, N.; Kim, S. J.; Venugopal, G. J. Phys. Chem. C 2015, 119, 22057. doi: 10.1021/acs.jpcc.5b06138  doi: 10.1021/acs.jpcc.5b06138

    47. [47]

      Gao, X.; Li, J.; Du, R.; Zhou, J.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z.; Wu, L. Z.; Liu, Z. Adv. Mater. 2017, 29, 1605308. doi: 10.1002/adma.201605308  doi: 10.1002/adma.201605308

    48. [48]

      Han. Y.; Lu, X.; Tang, S.; Yin, X.; Wei, Z; Lu, T. Adv. Energy Mater. doi: 10.1002/aenm.201702992  doi: 10.1002/aenm.201702992

    49. [49]

      Kang, B.; Lee, J. Y. J. Phys. Chem. C 2014, 118, 12035. doi: 10.1021/jp502780y  doi: 10.1021/jp502780y

    50. [50]

      Chen, X.; Qiao, Q.; An, L.; Xia, D. J. Phys. Chem. C 2015, 119, 11493. doi: 10.1021/acs.jpcc.5b02505  doi: 10.1021/acs.jpcc.5b02505

    51. [51]

      Chen, X. Phys. Chem. Chem. Phys. 2015, 17, 29340. doi:10.1039/C5CP05350A  doi: 10.1039/C5CP05350A

    52. [52]

      Liu, R.; Liu, H.; Li, Y.; Yi, Y.; Shang, X.; Zhang, S.; Yu, X.; Zhang, S.; Cao, H.; Zhang, G. Nanoscale 2014, 6, 11336. doi: 10.1039/C4NR03185G  doi: 10.1039/C4NR03185G

    53. [53]

      Zhang, S.; Cai, Y.; He, H.; Zhang, Y.; Liu, R.; Cao, H.; Wang, M.; Liu, J.; Zhang, G.; Li, Y. J. Mater. Chem. A 2016, 4, 4738. doi: 10.1039/C5TA10579J  doi: 10.1039/C5TA10579J

    54. [54]

      Lv, Q.; Si, W.; Yang, Z.; Wang, N.; Tu, Z.; Yi, Y.; Huang, C.; Jiang, L.; Zhang, M.; He, J. ACS Appl. Mater. Interfaces 2017, 9, 29744. doi: 10.1021/acsami.7b08115  doi: 10.1021/acsami.7b08115

    55. [55]

      Li, Y.; Guo, C.; Li, J.; Liao, W.; Li, Z.; Zhang, J.; Chen, C. Carbon 2017, 119, 201. doi: 10.1016/j.carbon.2017.04.038  doi: 10.1016/j.carbon.2017.04.038

    56. [56]

      Lin, Z.-Z. Carbon 2015, 86, 301. doi: 10.1016/j.carbon.2015.02.014  doi: 10.1016/j.carbon.2015.02.014

    57. [57]

      Xue, Y.; Guo, Y.; Yi, Y.; Li, Y.; Liu, H.; Li, D.; Yang, W.; Li, Y. Nano Energy 2016, 30, 858. doi: 10.1016/j.nanoen.2016.09.005  doi: 10.1016/j.nanoen.2016.09.005

    58. [58]

      Xue, Y.; Li, J.; Xue, Z.; Li, Y.; Liu, H.; Li, D.; Yang, W.; Li, Y. ACS Appl. Mater. Interfaces 2016, 8, 31083. doi: 10.1021/acsami.6b12655  doi: 10.1021/acsami.6b12655

    59. [59]

      Li, J.; Gao, X.; Jiang, X.; Li, X.-B.; Liu, Z.; Zhang, J.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2017, 7, 5209. doi: 10.1021/acscatal.7b01781  doi: 10.1021/acscatal.7b01781

    60. [60]

      Yao, Y.; Jin, Z.; Chen, Y.; Gao, Z.; Yan, J.; Liu, H.; Wang, J.; Li, Y.; Liu, S. F. Carbon 2017, doi: 10.1016/j.carbon.2017.12.024  doi: 10.1016/j.carbon.2017.12.024

    61. [61]

      Xue, Y.; Zuo, Z.; Li, Y.; Liu, H.; Li, Y. Small 2017, 13, 1700936. doi: 10.1002/smll.201700936  doi: 10.1002/smll.201700936

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    17. [17]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

Metrics
  • PDF Downloads(22)
  • Abstract views(1804)
  • HTML views(456)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return