Citation: YIN Di, QIU Zongyang, LI Pai, LI Zhenyu. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1116-1123. doi: 10.3866/PKU.WHXB201801151 shu

A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters

  • Corresponding author: LI Zhenyu, zyli@mail.ustc.edu.cn
  • Received Date: 18 December 2017
    Revised Date: 11 January 2018
    Accepted Date: 11 January 2018
    Available Online: 15 October 2018

    Fund Project: the Special Program for Applied Research on Super Computation of the National Nature Science Foundation of China-Guangdong Joint Fund U1501501The project was supported by National Natural Science Foundation of China (21573201), the Ministry of Science and Technology of China (2016YFA0200604), and the Special Program for Applied Research on Super Computation of the National Nature Science Foundation of China-Guangdong Joint Fund (U1501501)the Ministry of Science and Technology of China 2016YFA0200604National Natural Science Foundation of China 21573201

  • Cu has been widely used as a substrate material for graphene growth. To understand the atomistic mechanism of growth, an efficient and accurate method for describing Cu-C interactions is necessary, which is the prerequisite of any possible large-scale molecular simulation studies. The semi-empirical density-functional tight-binding (DFTB) method has a solid basis from the density functional theory (DFT) and is believed to be a good tool for achieving a balance between efficiency and accuracy. However, existing DFTB parameters cannot provide a reasonable description of the Cu surface structure. At the same time, DFTB parameters for Cu-C interactions are not available. Therefore, it is highly desirable to develop a set of DFTB parameters that can describe the Cu-C system, especially for surface reactions. In this study, a parametrization for Cu-C systems within the self-consistent-charge DFTB (SCC-DFTB) framework is performed. One-center parameters, including on-site energy, Hubbard, and spin parameters, are obtained from DFT calculations on free atoms. Two-center parameters can be calculated based on atomic wavefunctions. The remaining repulsive potential is obtained as the best compromise to describe different kinds of systems. Test calculations on Cu surfaces and Cu-or C atom-adsorbed Cu surfaces indicate that the obtained parameters can generate reasonable geometric structures and energetics. Based on this parameter set, carbon dimerization on the Cu(111) surface has been investigated via molecular dynamics simulations. Since they are the feeding species for graphene growth, it is important to understand how carbon dimers are formed on the Cu surface. It is difficult to observe carbon dimerization in brute-force MD simulations even at high temperatures, because of the surface structure distortion. To study the dimerization mechanism, metadynamics simulations are performed. Our simulations suggest that carbon atoms will rotate around the bridging Cu atom after a bridging metal structure is formed, which eventually leads to the dimer formation. The free energy barrier for dimerization at 1300 K is about 0.9 eV. The results presented here provide useful insights for understanding graphene growth.
  • 加载中
    1. [1]

      Tetlow, H.; de Boer, J. P.; Ford, I.; Vvedensky, D.; Coraux, J.; Kantorovich, L. Phys. Rep. 2014, 542, 195. doi: 10.1016/j.physrep.2014.03.003  doi: 10.1016/j.physrep.2014.03.003

    2. [2]

      Wu, P.; Zhang, W.; Li, Z.; Yang, J. Small 2014, 10, 2136. doi: 10.1002/smll.201303680  doi: 10.1002/smll.201303680

    3. [3]

      Wu, P.; Zhang, Y.; Cui, P.; Li, Z. Y.; Yang, J. L.; Zhang, Z. Y. Phys. Rev. Lett. 2015, 114, 216102. doi: 10.1103/PhysRevLett. 114.216102  doi: 10.1103/PhysRevLett.114.216102

    4. [4]

      Li, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2017, 121, 25949. doi: 10.1021/acs.jpcc.7b09622  doi: 10.1021/acs.jpcc.7b09622

    5. [5]

      Wu, P.; Zhang, W.; Li, Z.; Yang, J.; Hou, J. G. J. Chem. Phys. 2010, 133, 071101. doi:10.1063/1.3473045  doi: 10.1063/1.3473045

    6. [6]

      Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Science 2009, 324, 1312. doi: 10.1126/science.1171245  doi: 10.1126/science.1171245

    7. [7]

      Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672  doi: 10.1063/1.1329672

    8. [8]

      Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260. doi: 10.1103/PhysRevB.58.7260  doi: 10.1103/PhysRevB.58.7260

    9. [9]

      Frauenheim, T.; Seifert, G.; Elstner, M.; Hajnal, Z.; Jungnickel, G.; Porezag, D.; Suhai, S.; Scholz, R. Phys. Stat. Sol. (b) 2000, 217, 41. doi: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V  doi: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V

    10. [10]

      Porezag, D.; Frauenheim, T.; Kohler, T.; Seifert, G.; Kaschner, R. Phys. Rev. B 1995, 51, 12947. doi:10.1103/PhysRevB.51.12947  doi: 10.1103/PhysRevB.51.12947

    11. [11]

      Elstner, M.; Frauenheim, T.; Kaxiras, E.; Seifert, G.; Suhai, S. Phys. Stat. Sol. (b) 2000, 217, 357. doi: 10.1002/(SICI)1521-3951(200001) 217:1<357::AID-PSSB357>3.0.CO;2-J  doi: 10.1002/(SICI)1521-3951(200001)217:1<357::AID-PSSB357>3.0.CO;2-J

    12. [12]

      Elstner, M. Theor. Chem. Acc. 2006, 116, 316. doi: 10.1007/s00214-005-0066-0  doi: 10.1007/s00214-005-0066-0

    13. [13]

      Page, A. J.; Ohta, Y.; Irle, S.; Morokuma, K. Acc. Chem. Res. 2010, 43, 1375. doi: 10.1021/ar100064g  doi: 10.1021/ar100064g

    14. [14]

      Wang, Y.; Page, A. J.; Nishimoto, Y.; Qian, H.-J.; Morokuma, K.; Irle, S. J. Am. Chem. Soc. 2011, 133, 18837. doi: 10.1021/ja2064654  doi: 10.1021/ja2064654

    15. [15]

      Li, H. -B.; Page, A. J.; Wang, Y.; Irle, S.; Morokuma, K. Chem. Comm. 2012, 48, 7937. doi: 10.1039/C2CC32995F  doi: 10.1039/C2CC32995F

    16. [16]

      Wahiduzzaman, M.; Oliveira, A. F.; Philipsen, P.; Zhechkov, L.; van Lenthe, E.; Witek, H. A.; Heine, T. J. Chem. Theory Compt. 2013, 9, 4006. doi: 10.1021/Ct4004959  doi: 10.1021/Ct4004959

    17. [17]

      Oliveira, A. F.; Philipsen, P.; Heine, T. J. Chem. Theory Compt. 2015, 11, 5209. doi: 10.1021/ acs.jctc.5b00702  doi: 10.1021/acs.jctc.5b00702

    18. [18]

      Slater-Koster files containing atomic parameters used in DFTB calculations. http://www.dftb.org/parameters/ (accessed Dec 1, 2017)

    19. [19]

      Frenzel, J.; Oliveira, A. F.; Duarte, H. A.; Heine, T.; Seifert, G. Z. Anorg. Allg. Chem. 2005, 631, 1267. doi: 10.1002/zaac.200500051  doi: 10.1002/zaac.200500051

    20. [20]

      Guimaraes, L.; Enyashin, A. N.; Frenzel, J.; Heine, T.; Duarte, H. A.; Seifert, G. ACS Nano 2007, 1, 362. doi:10.1021/nn700184k  doi: 10.1021/nn700184k

    21. [21]

      Koskinen, P.; Makinen, V. Comput. Mater. Sci. 2009, 47, 237. doi:/10.1016/j.commatsci.2009.07.013  doi: 10.1016/j.commatsci.2009.07.013

    22. [22]

      Slater, J. C.; Koster, G. F. Phys. Rev. 1954, 94, 1498. doi: 10.1103/PhysRev.94.1498  doi: 10.1103/PhysRev.94.1498

    23. [23]

      Gaus, M.; Cui, Q. A.; Elstner, M. J. Chem. Theory Compt. 2011, 7, 931. doi:10.1021/Ct100684s  doi: 10.1021/Ct100684s

    24. [24]

      Grundk tter-Stock, B.; Bezugly, V.; Kunstmann, J.; Cuniberti, G.; Frauenheim, T.; Niehaus, T. A. J. Chem. Theory Compt. 2012, 8, 1153. doi:10.1021/ct200722n  doi: 10.1021/ct200722n

    25. [25]

      Gaus, M.; Chou, C. -P.; Witek, H.; Elstner, M. J. Phys. Chem. A 2009, 113, 11866. doi:10.1021/jp902973m  doi: 10.1021/jp902973m

    26. [26]

      Bodrog, Z.; Aradi, B.; Frauenheim, T. J. Chem. Theory Compt. 2011, 7, 2654. doi:10.1021/ct200327s  doi: 10.1021/ct200327s

    27. [27]

      José, M. S.; Emilio, A.; Julian, D. G.; Alberto, G.; Javier, J.; Pablo, O.; Daniel, S. -P. J. Phys.: Condens. Matter 2002, 14, 2745. doi: 10.1088/0953-8984/14/11/302  doi: 10.1088/0953-8984/14/11/302

    28. [28]

      Thomas, F.; Gotthard, S.; Marcus, E.; Thomas, N.; Christof, K.; Marc, A.; Michael, S.; Zoltán, H.; Aldo, Di, C.; Sándor, S. J. Phys.: Condens. Matter 2002, 14, 3015. doi: 10.1088/0953-8984/14/11/313  doi: 10.1088/0953-8984/14/11/313

    29. [29]

      Aradi, B.; Hourahine, B.; Frauenheim, T. J. Phys. Chem. A 2007, 111, 5678. doi: 10.1021/jp070186p  doi: 10.1021/jp070186p

    30. [30]

      Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256(96)00008-0

    31. [31]

      Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi:10.1103/PhysRevB.54.11169  doi: 10.1103/PhysRevB.54.11169

    32. [32]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi:10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    33. [33]

      Knaup, J. M.; Hourahine, B.; Frauenheim, T. J. Phys. Chem. A 2007, 111, 5637. doi:10.1021/jp0688097  doi: 10.1021/jp0688097

    34. [34]

      Burdick, G. A. Phys. Rev. 1963, 129, 138. doi: 10.1103/PhysRev.129.138  doi: 10.1103/PhysRev.129.138

    35. [35]

      Shin, H.; Kang, S.; Koo, J.; Lee, H.; Kim, J.; Kwon, Y. J. Chem. Phys. 2014, 140, 114702. doi: 10.1063/1.4867544  doi: 10.1063/1.4867544

    36. [36]

      Van Wesep, R. G.; Chen, H.; Zhu, W.; Zhang, Z. J. Chem. Phys. 2011, 134, 171105. doi: 10.1063/1.3587239  doi: 10.1063/1.3587239

    37. [37]

      Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci. USA 2002, 99, 12562. doi: 10.1073/pnas.202427399  doi: 10.1073/pnas.202427399

  • 加载中
    1. [1]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    4. [4]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    5. [5]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    6. [6]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    7. [7]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    8. [8]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    9. [9]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    10. [10]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    13. [13]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    14. [14]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    15. [15]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    16. [16]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    17. [17]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    18. [18]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    19. [19]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    20. [20]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

Metrics
  • PDF Downloads(10)
  • Abstract views(684)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return