Citation: SHEN Xiangyan, HE Jianjiang, WANG Ning, HUANG Changshui. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 1029-1047. doi: 10.3866/PKU.WHXB201801122 shu

Graphdiyne for Electrochemical Energy Storage Devices

  • Corresponding author: HUANG Changshui, huangcs@qibebt.ac.cn
  • Received Date: 6 December 2017
    Revised Date: 8 January 2018
    Accepted Date: 9 January 2018
    Available Online: 12 September 2018

    Fund Project: The project was supported by the Hundred Talents Program and Frontier Science Research Project of the Chinese Academy of Sciences (QYZDB-SSW-JSC052) and the Natural Science Foundation of Shandong Province for Distinguished Young Scholars, China (JQ201610)the Natural Science Foundation of Shandong Province for Distinguished Young Scholars, China JQ201610the Hundred Talents Program and Frontier Science Research Project of the Chinese Academy of Sciences QYZDB-SSW-JSC052

  • Electrochemicalenergy storage devices are becoming increasingly important in modern societyfor efficient energy storage. The use of these devices is mainly dependent onthe electrode materials. As a newly discovered carbon allotrope, graphdiyne(GDY) is a two-dimensional full-carbon material. Its wide interlayer distance(0.365 nm), large specific surface area, special three-dimensional porousstructure (18-C hexagon pores), and high conductivity make it a potentialelectrode material in energy storage devices. In this paper, based on thefacile synthesis method and the unique porous structure of GDY, theapplications of GDY in energy storage devices have been discussed in detailfrom the aspects of both theoretical predictions and recent experimentaldevelopments. The Li/Na migration and storage in mono-layered and bulk GDYindicate that GDY-based batteries have excellent theoretical Li/Na storagecapacity. The maximal Li storage capacity in mono-layered GDY is LiC3(744 mAh∙g-1). The experimental Li storage capacity of GDY issimilar to theoretical predictions. The experimental Li storage capacity of athick GDY film is close to that of mono-layered GDY' (744 mAh∙g-1).A thin GDY film with double-side storage model has two-times the Li storagecapacity (1480 mAh∙g-1) of mono-layered GDY. Powder GDY has lower Listorage capacity than GDY film. The maximal Na storage capacity in GDYcorresponds to NaC5.14 (316 mAh∙g-1), and mono-layeredGDY possesses higher theoretical Na storage capacity (NaC2.57). Theexperimental Na storage capacity (261 mAh∙g-1) is similar to itstheoretical value. Besides, GDY as electrode material, applied in metal-sulfurbatteries, presents excellent electrochemical performance (in Li-S battery: 0.1C, 949.2 mAh∙g-1; in Mg-S battery: 50 mA∙g-1, 458.9 mAh∙g-1).This ingenious design presents a new way for the preparation of carbon-loadedsulfur. GDY electrode material is also successfully used in supercapacitors, including the traditional supercapacitor, Li-ion capacitors, and Na-ioncapacitors. The traditional supercapacitor with GDY as the electrode material showsgood double layer capacitance and pseudo-capacitance. Both Li-ion capacitor(100.3 W∙kg-1, 110.7 Wh∙kg-1) and Na-ion capacitor (300W∙kg-1, 182.3 Wh∙kg-1) possess high power and energydensities. Moreover, the effects of synthesis of GDY nanostructure, heattreatment of GDY, and atom-doping in GDY on the performance of electrochemicalenergy storage will be introduced and discussed. The results indicate that GDYhas great potential for application in different energy storage devices as anefficient electrode material.
  • 加载中
    1. [1]

      Abbasi, T.; Abbasi, S. A. Renew. Sust. Energ. Rev. 2010, 14, 919. doi: 10.1016/j.rser.2009.11.006  doi: 10.1016/j.rser.2009.11.006

    2. [2]

      Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X. J. Mater. Chem. A 2017, 5, 2411. 10.1039/c6ta08742f  doi: 10.1039/C6TA08742F

    3. [3]

      Wang, Z.; Zhang, W.; Li, X.; Gao, L. J. Mater. Res. 2016, 31, 1648. doi: 10.1557/jmr.2016.195  doi: 10.1557/jmr.2016.195

    4. [4]

      Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297  doi: 10.1038/nmat2297

    5. [5]

      Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/B813846J  doi: 10.1039/B813846J

    6. [6]

      Zhang, L. L.; Zhou, R.; Zhao, X. S. J. Mater. Chem. 2010, 20, 5983. doi: 10.1039/C000417K  doi: 10.1039/C000417K

    7. [7]

      Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Chem. Mater. 2010, 22, 1392. doi: 10.1021/cm902876u  doi: 10.1021/cm902876u

    8. [8]

      Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Adv. Mater. 2012, 24, 2047. doi: 10.1002/adma.201104634  doi: 10.1002/adma.201104634

    9. [9]

      Hong, S. M.; Etacheri, V.; Hong, C. N.; Choi, S. W.; Lee, K. B.; Pol, V. G. ACS Appl. Mat. Interfaces 2017, 9, 18790. doi: 10.1021/acsami.7b03456  doi: 10.1021/acsami.7b03456

    10. [10]

      Bazaka, K.; Jacob, M. V.; Ostrikov, K. K. Chem. Rev. 2016, 116, 163. doi: 10.1021/acs.chemrev.5b00566  doi: 10.1021/acs.chemrev.5b00566

    11. [11]

      Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Chem. Rev. 2015, 115, 5159. doi: 10.1021/cr5006217  doi: 10.1021/cr5006217

    12. [12]

      Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 46, 3256. doi: 10.1039/b922733d  doi: 10.1039/b922733d

    13. [13]

      Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Acc. Chem. Res. 2017, 50, 2470. doi: 10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    14. [14]

      Chen, Y.; Liu, H.; Li, Y. Chin. Sci. Bull. 2016, 61, 2901. doi: 10.1360/N972016-00483  doi: 10.1360/N972016-00483

    15. [15]

      Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, D.; Meng, Q.; Li, Y. Adv. Energy Mater. 2015, 5. doi: 10.1002/aenm.201401943  doi: 10.1002/aenm.201401943

    16. [16]

      Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; Fang, J.; Li, Y. Nano Lett. 2015, 15, 2756. doi: 10.1021/acs.nanolett.5b00787  doi: 10.1021/acs.nanolett.5b00787

    17. [17]

      Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572. doi: 10.1039/c3cs60388a  doi: 10.1039/c3cs60388a

    18. [18]

      Gao, J.; Li, J. F.; Chen, Y. H.; Zuo, Z. C.; Li, Y. J.; Liu, H. B. Li, Y. L. Nano Energy 2018, 43, 192. doi: 10.1016/j.nanoen.2017.11.005  doi: 10.1016/j.nanoen.2017.11.005

    19. [19]

      Huang, C. S.; Li, Y. L. Acta Phys. -Chim. Sin. 2016, 32, 1314.  doi: 10.3866/pku.whxb201605035

    20. [20]

      Zhou, Q.; Carroll, P. J.; Swager, T. M. J. Org. Chem. 1994, 59, 1294. doi: 10.1021/jo00085a016  doi: 10.1021/jo00085a016

    21. [21]

      Haley, M. M.; Bell, M. L.; English, J. J.; And, C. A. J.; Weakley, T. J. R. J. Am. Chem. Soc 1997, 119, 2956. doi: 10.1021/ja964048h  doi: 10.1021/ja964048h

    22. [22]

      Wan, B. W.; Haley, M. M. J. Org. Chem. 2001, 66, 3893. doi: 10.1021/jo010183n  doi: 10.1021/jo010183n

    23. [23]

      Marsden, J. A.; Haley, M. M. J. Org. Chem. 2005, 70, 10213. doi: 10.1021/jo050926v  doi: 10.1021/jo050926v

    24. [24]

      Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Nano Lett. 2008, 8, 2277. doi: 10.1021/nl800957b  doi: 10.1021/nl800957b

    25. [25]

      Zhou, L.; Yang, L.; Yuan, P.; Zou, J.; Wu, Y.; Yu, C. J. Phys. Chem. C 2010, 114, 21868. doi: 10.1021/jp108778v  doi: 10.1021/jp108778v

    26. [26]

      Guo, P.; Song, H.; Chen, X. Electrochim. Acta 2009, 11, 1320. doi: 10.1016/j.elecom.2009.04.036  doi: 10.1016/j.elecom.2009.04.036

    27. [27]

      Shim, J.; Striebel, K. A. J. Power Sources 2003, 119, 934. doi: 10.1016/S0378-7753[03]00235-0  doi: 10.1016/S0378-7753[03]00235-0

    28. [28]

      Gu, Z. Y.; Gao, S.; Huang, H.; Jin, X. Z.; Wu, A. M.; Cao, G. Z. Acta Phys. -Chim. Sin. 2017, 33, 1197  doi: 10.3866/pku.whxb201703293

    29. [29]

      Kostecki, R.; Mclarnon, F. J. Power Sources 2003, 119, 550. doi: 10.1016/S0378-7753[03]00287-8  doi: 10.1016/S0378-7753[03]00287-8

    30. [30]

      Sethuraman, V. A.; Hardwick, L. J.; Srinivasan, V.; Kostecki, R. J. Power Sources 2010, 195, 3655. doi: 10.1016/j.jpowsour.2009.12.034  doi: 10.1016/j.jpowsour.2009.12.034

    31. [31]

      Zhang, H.; Xia, Y.; Bu, H.; Wang, X.; Zhang, M.; Luo, Y.; Zhao, M. J. Appl. Phys. 2013, 113, 1. doi: 10.1063/1.4789635  doi: 10.1063/1.4789635

    32. [32]

      Zhang, S.; Liu, H.; Huang, C.; Cui, G.; Li, Y. Chem. Commun. 2015, 51, 1834. doi: 10.1039/c4cc08706b  doi: 10.1039/c4cc08706b

    33. [33]

      Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951. doi: 10.1021/jp212181h  doi: 10.1021/jp212181h

    34. [34]

      Sun, C.; Searles, D. J. J. Phys. Chem. C 2012, 116, 26222. doi: 10.1021/jp309638z  doi: 10.1021/jp309638z

    35. [35]

      Jang, B.; Koo, J.; Park, M.; Lee, H.; Nam, J.; Kwon, Y.; Lee, H. Appl. Phys. Lett. 2013, 103, 1. doi: 10.1063/1.4850236  doi: 10.1063/1.4850236

    36. [36]

      Huang, C.; Zhang, S.; Liu, H.; Li, Y.; Cui, G.; Li, Y. Nano Energy 2015, 11, 481. doi: 10.1016/j.nanoen.2014.11.036  doi: 10.1016/j.nanoen.2014.11.036

    37. [37]

      Zhang, S.; Du, H.; He, J.; Huang, C.; Liu, H.; Cui, G.; Li, Y. ACS Appl. Mat. Interfaces 2016, 8, 8467. doi: 10.1021/acsami.6b00255  doi: 10.1021/acsami.6b00255

    38. [38]

      Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. ACS Nano 2011, 5, 2593. doi: 10.1021/nn102472s  doi: 10.1021/nn102472s

    39. [39]

      Zuo, Z.; Shang, H.; Chen, Y.; Li, J.; Liu, H.; Li, Y.; Li, Y. Chem. Commun. 2017, 53, 8074. doi: 10.1039/c7cc03200e  doi: 10.1039/c7cc03200e

    40. [40]

      Fan, Z. J.; Yan, J.; Wei, T.; Ning, G. Q.; Zhi, L. J.; Liu, J. C.; Cao, D. X.; Wang, G. L.; Wei, F. ACS Nano 2011, 5, 2787. doi: 10.1021/nn200195k  doi: 10.1021/nn200195k

    41. [41]

      Han, F. D.; Bai, Y. J.; Liu, R.; Yao, B.; Qi, Y. X.; Lun, N.; Zhang, J. X. Adv. Energy Mater. 2011, 1, 798. doi: 10.1002/aenm.201100340  doi: 10.1002/aenm.201100340

    42. [42]

      Shang, H.; Zuo, Z.; Li, L.; Wang, F.; Liu, H.; Li, Y.; Li, Y. Angew. Chem. Int. Ed. 2017, 129, 1. doi: 10.1002/ange.201711366  doi: 10.1002/ange.201711366

    43. [43]

      Lin, J.; Peng, Z.; Xiang, C.; Ruan, G.; Yan, Z.; Natelson, D.; Tour, J. M. ACS Nano 2013, 7, 6001. doi: 10.1021/nn4016899  doi: 10.1021/nn4016899

    44. [44]

      Wang, Z. L.; Xu, D.; Wang, H. G.; Wu, Z.; Zhang, X. B. ACS Nano 2013, 7, 2422. doi: 10.1021/nn3057388  doi: 10.1021/nn3057388

    45. [45]

      Gong, Y.; Yang, S.; Zhan, L.; Ma, L.; Vajtai, R.; Ajayan, P. M. Adv. Funct. Mater. 2014, 24, 125. doi: 10.1002/adfm.201300844  doi: 10.1002/adfm.201300844

    46. [46]

      Wang, D.; Yang, J.; Li, X.; Geng, D.; Li, R.; Cai, M.; Sham, T. K.; Sun, X. Energy Environ. Sci. 2013, 6, 2900. doi: 10.1039/c3ee40829a  doi: 10.1039/c3ee40829a

    47. [47]

      Zhou, X.; Wan, L. J.; Guo, Y. G. Adv. Mater. 2013, 25, 2152. doi: 10.1002/adma.201300071  doi: 10.1002/adma.201300071

    48. [48]

      Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H.; Manthiram, A. Angew. Chem. Int. Ed. 2016, 55, 12783. doi: 10.1002/anie.201606870  doi: 10.1002/anie.201606870

    49. [49]

      He, J.; Bao, K.; Cui, W.; Yu, J.; Huang, C.; Shen, X.; Cui, Z.; Wang, N. Chem. Eur. J. 2017, 23, 1. doi: 10.1002/chem.201704581  doi: 10.1002/chem.201704581

    50. [50]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    51. [51]

      Wang, H.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. J. Mater. Chem. A 2016, 4, 5149. doi: 10.1039/C6TA01392A  doi: 10.1039/C6TA01392A

    52. [52]

      Dirican, M.; Zhang, X. J. Power Sources 2016, 327, 333. doi: 10.1016/j.jpowsour.2016.07.069  doi: 10.1016/j.jpowsour.2016.07.069

    53. [53]

      Jo, C.; Park, Y.; Jeong, J.; Lee, K. T.; Lee, J. ACS Appl. Mat. Interfaces 2015, 7, 11748. doi: 10.1021/acsami.5b03186  doi: 10.1021/acsami.5b03186

    54. [54]

      Kang, B.; Ceder, G. Nature 2009, 458, 190. doi: 10.1038/nature07853  doi: 10.1038/nature07853

    55. [55]

      Scrosati, B.; Hassoun, J.; Sun, Y. K. Energy Environ. Sci. 2011, 4, 3287. doi: 10.1039/C1EE01388B  doi: 10.1039/C1EE01388B

    56. [56]

      David, L.; Bhandavat, R.; Singh, G. ACS Nano 2014, 8, 1759. doi: 10.1021/nn406156b  doi: 10.1021/nn406156b

    57. [57]

      Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. ACS Nano 2013, 7, 6378. doi: 10.1021/nn4025674  doi: 10.1021/nn4025674

    58. [58]

      Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Adv. Mater. 2014, 26, 2273. doi: 10.1002/adma.201304469  doi: 10.1002/adma.201304469

    59. [59]

      Fang, Y. J.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.doi: 10.3866/pku.whxb201610111  doi: 10.3866/pku.whxb201610111

    60. [60]

      Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957  doi: 10.1021/nl3016957

    61. [61]

      Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan, X.; Lotfabad, E. M.; Olsen, B. C. ACS Nano 2013, 7, 11004. doi: 10.1021/nn404640c  doi: 10.1021/nn404640c

    62. [62]

      Song, H.; Li, N.; Cui, H.; Wang, C. Nano Energy 2014, 4, 81. doi: 10.1016/j.nanoen.2013.12.017  doi: 10.1016/j.nanoen.2013.12.017

    63. [63]

      Liu, J.; Yang, Z.; Wang, J.; Gu, L.; Maier, J.; Yu, Y. Nano Energy 2015, 16, 389. doi: 10.1016/j.nanoen.2015.07.020  doi: 10.1016/j.nanoen.2015.07.020

    64. [64]

      Pan, H.; Lu, X.; Yu, X.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Adv. Energy Mater. 2014, 3, 1186. doi: 10.1002/aenm.201300139  doi: 10.1002/aenm.201300139

    65. [65]

      Ding, J.; Li, Z.; Wang, H.; Cui, K.; Kohandehghan, A.; Tan, X.; Karpuzov, D.; Mitlin, D. J. Mater. Chem. A 2015, 3, 7100. doi: 10.1039/C5TA00399G  doi: 10.1039/C5TA00399G

    66. [66]

      Jiang, Y.; Hu, M.; Zhang, D.; Yuan, T.; Sun, W.; Xu, B.; Yan, M. Nano Energy 2014, 5, 60. doi: 10.1016/j.nanoen.2014.02.002  doi: 10.1016/j.nanoen.2014.02.002

    67. [67]

      Li, Z.; Ding, J.; Wang, H.; Cui, K.; Stephenson, T.; Karpuzov, D.; Mitlin, D. Nano Energy 2015, 15, 369. doi: 10.1016/j.nanoen.2015.04.018  doi: 10.1016/j.nanoen.2015.04.018

    68. [68]

      Ahmed, B.; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N. Small 2015, 11, 4341. doi: 10.1002/smll.201500919  doi: 10.1002/smll.201500919

    69. [69]

      Lacey, S. D.; Wan, J.; Von, W. C. A.; Russell, S. M.; Dai, J.; Bao, W.; Xu, K.; Hu, L. Nano Lett. 2015, 15, 1018. doi: 10.1021/nl503871s  doi: 10.1021/nl503871s

    70. [70]

      Xu, Z.; Lv, X.; Li, J.; Chen, J.; Liu, Q. RSC Advances 2016, 6, 25594. doi: 10.1039/c6ra01870j  doi: 10.1039/c6ra01870j

    71. [71]

      Niaei, A. H. F.; Hussain, T.; Hankel, M.; Searles, D. J. J. Power Sources 2017, 343, 354. doi: 10.1016/j.jpowsour.2017.01.027  doi: 10.1016/j.jpowsour.2017.01.027

    72. [72]

      Zhang, S.; He, J.; Zheng, J.; Huang, C.; Lv, Q.; Wang, K.; Wang, N.; Lan, Z. J. Mater. Chem. A 2017, 5, 2045. doi: 10.1039/c6ta09822c  doi: 10.1039/c6ta09822c

    73. [73]

      Kim, H. S.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J. G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess, W. C.; Muldoon, J. Nat. Commun. 2011, 2, 427. doi: 10.1038/ncomms1435  doi: 10.1038/ncomms1435

    74. [74]

      Li, W.; Cheng, S.; Wang, J.; Qiu, Y.; Zheng, Z.; Lin, H.; Nanda, S.; Ma, Q.; Xu, Y.; Ye, F. Angew. Chem. Int. Ed. 2016, 55, 6406. doi: 10.1002/anie.201600256  doi: 10.1002/anie.201600256

    75. [75]

      Manthiram, A.; Fu, Y.; Su, Y. S. Acc. Chem. Res. 2013, 46, 1125. doi: 10.1021/ar300179v  doi: 10.1021/ar300179v

    76. [76]

      Shaibani, M.; Akbari, A.; Sheath, P.; Easton, C. D.; Banerjee, P. C.; Konstas, K.; Fakhfouri, A.; Barghamadi, M.; Musameh, M. M.; Best, A. S. ACS Nano 2016, 10, 7768. doi: 10.1021/acsnano.6b03285  doi: 10.1021/acsnano.6b03285

    77. [77]

      Zhang, Z.; Li, Z.; Hao, F.; Wang, X.; Li, Q.; Qi, Y.; Fan, R.; Yin, L. Adv. Funct. Mater. 2014, 24, 2500. doi: 10.1002/adfm.201303080  doi: 10.1002/adfm.201303080

    78. [78]

      Chen, R.; Zhao, T.; Wu, F. Chem. Commun. 2015, 51, 18. doi: 10.1039/C4CC05109B  doi: 10.1039/C4CC05109B

    79. [79]

      Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2011, 133, 18522. doi: 10.1021/ja206955k  doi: 10.1021/ja206955k

    80. [80]

      Zhou, G.; Pei, S.; Li, L.; Wang, D. W.; Wang, S.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. Adv. Mater. 2014, 26, 664. doi: 10.1039/C4CC05109B  doi: 10.1039/C4CC05109B

    81. [81]

      Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W.; Wei, F. ACS Nano 2012, 6, 10759. doi: 10.1021/nn304037d  doi: 10.1021/nn304037d

    82. [82]

      Du, H.; Yang, H.; Huang, C.; He, J.; Liu, H.; Li, Y. Nano Energy 2016, 22, 615. doi: 10.1016/j.nanoen.2016.02.052  doi: 10.1016/j.nanoen.2016.02.052

    83. [83]

      Zhang, H.; Zhao, M.; He, X.; Wang, Z.; Zhang, X.; Liu, X. J. Phys. Chem. C 2011, 115, 8845. doi: 10.1016/j.jpowsour.2009.12.034  doi: 10.1016/j.jpowsour.2009.12.034

    84. [84]

      Du, H.; Zhang, Z.; He, J.; Cui, Z.; Chai, J.; Huang, C.; Cui, G. Small 2017, 13, 18522. doi: 10.1002/smll.201702277  doi: 10.1002/smll.201702277

    85. [85]

      Zhao-Karger, Z.; Zhao, X.; Wang, D.; Diemant, T.; Behm, R. J.; Fichtner, M. Adv. Energy Mater. 2015, 5, 1401155. doi: 10.1002/aenm.201401155  doi: 10.1002/aenm.201401155

    86. [86]

      Vinayan, B. P.; Zhaokarger, Z.; Diemant, T.; Chakravadhanula, V. S.; Schwarzburger, N. I.; Cambaz, M. A.; Behm, R. J.; Kübel, C.; Fichtner, M. Nanoscale 2015, 8, 3296. doi: 10.1039/C5NR04383B  doi: 10.1039/C5NR04383B

    87. [87]

      Xia, X.; Zhang, Y.; Chao, D.; Xiong, Q.; Fan, Z.; Tong, X.; Tu, J.; Zhang, H.; Fan, H. J. Energy Environ. Sci. 2015, 8, 1559. doi: 10.1039/C5EE00339C  doi: 10.1039/C5EE00339C

    88. [88]

      Wang, L.; Li, X.; Guo, T.; Yan, X.; Tay, B. K. Int. J. Hydrogen Energy 2014, 39, 7876. doi: 10.1016/j.ijhydene  doi: 10.1016/j.ijhydene

    89. [89]

      Wu, Z.; Zhang, X. B. Acta Phys. -Chim. Sin. 2017, 33, 305.doi: 10.3866/pku.whxb201611012  doi: 10.3866/pku.whxb201611012

    90. [90]

      Krishnamoorthy, K.; Veerasubramani, G. K.; Radhakrishnan, S.; Sang, J. K. Mater. Res. Bull. 2014, 50, 499. doi: 10.1016/j.materresbull  doi: 10.1016/j.materresbull

    91. [91]

      Fan, L. Q.; Liu, G. J.; Zhang, C. Y.; Wu, J. H.; Wei, Y. L. Int. J. Hydrogen Energy 2015, 40, 10150. doi: 10.1016/j.ijhydene  doi: 10.1016/j.ijhydene

    92. [92]

      Xin, G.; Wang, Y.; Zhang, J.; Jia, S.; Zang, J.; Wang, Y. Int. J. Hydrogen Energy 2015, 40, 10176. doi: 10.1016/j.ijhydene.2015.06.060  doi: 10.1016/j.ijhydene.2015.06.060

    93. [93]

      Krishnamoorthy, K.; Ananth, A.; Mok, Y. S.; Kim, S. J. Sci. Adv. Mater. 2014, 6, 349. doi: 10.1166/sam.2014.1722  doi: 10.1166/sam.2014.1722

    94. [94]

      Chen, C. M.; Zhang, Q.; Yang, M. G.; Huang, C. H.; Yang, Y. G.; Wang, M. Z. Carbon 2012, 50, 3572. doi: 10.1016/j.carbon.2012.03.029  doi: 10.1016/j.carbon.2012.03.029

    95. [95]

      Ramachandran, R.; Saranya, M.; Velmurugan, V.; Raghupathy, B. P. C.; Jeong, S. K.; Grace, A. N. Appl. Energy 2015, 153, 22. doi: 10.1016/j.apenergy  doi: 10.1016/j.apenergy

    96. [96]

      Tahir, M.; Cao, C.; Butt, F. K.; Idrees, F.; Mahmood, N.; Ali, Z.; Aslam, I.; Tanveer, M.; Rizwan, M.; Mahmood, T. J. Mater. Chem. A 2013, 1, 13949. doi: 10.1039/C3TA13291A  doi: 10.1039/C3TA13291A

    97. [97]

      Fan, L. Q.; Liu, G. J.; Zhang, C. Y.; Wu, J. H.; Wei, Y. L. Int. J. Hydrogen Energy 2015, 40, 10150. doi: 10.1016/j.ijhydene.2015.06.061  doi: 10.1016/j.ijhydene.2015.06.061

    98. [98]

      Krishnamoorthy, K.; Thangavel, S.; Veetil, J. C.; Raju, N.; Venugopal, G.; Kim, S. J. Int. J. Hydrogen Energy 2016, 41, 1672. doi: 10.1016/j.ijhydene.2015.10.118  doi: 10.1016/j.ijhydene.2015.10.118

    99. [99]

      Ren, J. J.; Su, L. W.; Qin, X.; Yang, M.; Wei, J. P.; Zhou, Z.; Shen, P. W. J. Power Sources 2014, 264, 108. doi: 10.1016/j.jpowsour.2014.04.076  doi: 10.1016/j.jpowsour.2014.04.076

    100. [100]

      Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J.; Liu, Z. J. Am. Chem. Soc. 2015, 137, 7596. doi: 10.1021/jacs.5b04057  doi: 10.1021/jacs.5b04057

    101. [101]

      Wang, K.; Wang, N.; He, J.; Yang, Z.; Shen, X.; Huang, C. Electrochim. Acta 2017, 253, 506. doi: 10.1016/j.electacta.2017.09.101  doi: 10.1016/j.electacta.2017.09.101

    102. [102]

      Wang, K.; Wang, N.; He, J.; Yang Z.; Shen, X.; Huang, C. ACS Appl. Mater. Interfaces 2017, 9, 40604. doi: 10.1021/acsami.7b11420  doi: 10.1021/acsami.7b11420

    103. [103]

      Yang, J.; Zhou, X.; Wu, D.; Zhao, X.; Zhou, Z. Adv. Mater. 2017, 29, 1604108. doi: 10.1002/adma.201604108  doi: 10.1002/adma.201604108

    104. [104]

      Hou, H.; Shao, L.; Zhang, Y.; Zou, G.; Chen, J.; Ji, X. Adv. Sci. 2017, 4, 10. doi: 1002/advs.201600243

    105. [105]

      Xu, J.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S.; Dai, L. Adv. Mater. 2015, 27, 2042. doi: 10.1002/adma.201405370  doi: 10.1002/adma.201405370

    106. [106]

      Fan, L.; Lu, B. Small 2016, 12, 2783. doi: 10.1002/smll.201600565  doi: 10.1002/smll.201600565

    107. [107]

      Sun, T.; Li, Z. J.; Wang, H. G.; Bao, D.; Meng, F. L.; Zhang, X. B. Angew. Chem. Int. Ed. 2016, 55, 10662. doi: 10.1002/anie.201604519  doi: 10.1002/anie.201604519

    108. [108]

      Wang, H.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. J. Mater. Chem. A 2016, 4, 5149. doi: 10.1039/c6ta01392a  doi: 10.1039/c6ta01392a

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    16. [16]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(10)
  • Abstract views(439)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return