Citation: OROZCO-VALENCIA Ulises, GÁZQUEZ José L., VELA Alberto. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 692-698. doi: 10.3866/PKU.WHXB201801121 shu

Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis

  • Corresponding author: VELA Alberto, avela@cinvestav.mx
  • Received Date: 24 November 2017
    Revised Date: 29 December 2017
    Accepted Date: 5 January 2018
    Available Online: 12 June 2018

    Fund Project: UOV was supported in part by Conacyt through a doctoral fellowship. JLG thanks Conacyt for grant 237045, and AV thanks Conacyt for grant Fronteras 867

  • A global and local charge transfer partitioning model, based on the cornerstone theory developed by Robert G. Parr and Robert G. Pearson, which introduces two charge transfer channels (one for accepting electrons (electrophilic) and another for donating (nucleophilic)), is applied to the reaction of a set of indoles with 4, 6-dinitrobenzofuroxan. The global analysis indicates that the prevalent electron transfer mechanism in the reaction is a nucleophilic one on the indoles, i.e., the indoles under consideration transfer electrons to 4, 6-dinitrobenzofuroxan. Evaluating the reactivity descriptors with exchange-correlation functionals including exact exchange (global hybrids) yields slightly better correlations than those obtained with generalized gradient-approximated functionals; however, the trends are preserved. Comparing the trend obtained with the number of electrons donated by the indoles, and predicted by the partitioning model, with that observed experimentally based on the measured rate constants, we propose that the number of electrons transferred through this channel can be used as a nucleophilicity scale to order the reactivity of indoles towards 4, 6-dinitrobenzofuroxan. This approach to obtain reactivity scales has the advantage of depending on the intrinsic properties of the two reacting species; therefore, it opens the possibility that the same group of molecules may show different reactivity trends depending on the species with which they are reacting. The local model allows systematic incorporation of the reactive atoms based on the their decreasing condensed Fukui functions, and the correlations obtained by increasing the number of reactive atoms participating in the local analysis of the transferred nucleophilic charge improve, reaching an optimal correlation, which in the present case indicates keeping three atoms from the indoles and two from 4, 6-dinitrobenzofuroxan. The atoms selected by this procedure provide valuable information about the local reactivity of the indoles. We further show that this information about the most reactive atoms on each reactant, combined with the spatial distribution of the nucleophilic and electrophilic Fukui functions of both reactants, allows one to propose non-trivial candidates of starting geometries for the search of the transition state structures present in these reactions.
  • 加载中
    1. [1]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, Revised ed.; Oxford University Press: New York, NY, USA, 1994.

    2. [2]

      Chermette, H. J. Comput. Chem. 1999, 20, 129. doi: 10.1002/(Sici)1096-987x(19990115)20:1 < 129::Aid-Jcc13 > 3.0.Co; 2-A  doi: 10.1002/(Sici)1096-987x(19990115)20:1<129::Aid-Jcc13>3.0.Co;2-A

    3. [3]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    4. [4]

      Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    5. [5]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/Pku.Whxb20090332  doi: 10.3866/Pku.Whxb20090332

    6. [6]

      Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f  doi: 10.1021/cr040109f

    7. [7]

      Chattaraj, P. K.; Roy, D. R. Chem. Rev. 2007, 107, PR46. doi: 10.1021/cr078014b  doi: 10.1021/cr078014b

    8. [8]

      Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43. doi: 10.1021/cr100149p  doi: 10.1021/cr100149p

    9. [9]

      Pearson, R. G. Coord. Chem. Rev. 1990, 100, 403. doi: 10.1016/0010-8545(90)85016-l  doi: 10.1016/0010-8545(90)85016-l

    10. [10]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. doi: 10.1021/Ja00364a005  doi: 10.1021/Ja00364a005

    11. [11]

      Pearson, R. G. Inorg. Chem. 1988, 27, 734. doi: 10.1021/ic00277a030  doi: 10.1021/ic00277a030

    12. [12]

      Pearson, R. G. J. Org. Chem. 1989, 54, 1423. doi: 10.1021/jo00267a034  doi: 10.1021/jo00267a034

    13. [13]

      Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, USA, 2005.

    14. [14]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307  doi: 10.1002/qua.20307

    15. [15]

      Roos, G.; Geerlings, P.; Messens, J. J. Phys. Chem. B 2009, 113, 13465. doi: 10.1021/jp9034584  doi: 10.1021/jp9034584

    16. [16]

      Orozco-Valencia, A. U.; Gazquez, J. L.; Vela, A. J. Phys. Chem. A 2017, 121, 4019. doi: 10.1021/acs.jpca.7b01765  doi: 10.1021/acs.jpca.7b01765

    17. [17]

      Orozco-Valencia, U.; Gazquez, J. L.; Vela, A. J. Mol. Model. 2017, 23, 207. doi: 10.1007/s00894-017-3368-y  doi: 10.1007/s00894-017-3368-y

    18. [18]

      Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088. doi: 10.1021/jo0614339  doi: 10.1021/jo0614339

    19. [19]

      Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036  doi: 10.1021/ja00326a036

    20. [20]

      Berkowitz, M. J. Am. Chem. Soc. 1987, 109, 4823. doi: 10.1021/ja00250a012  doi: 10.1021/ja00250a012

    21. [21]

      Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008  doi: 10.1021/ja00279a008

    22. [22]

      Fuentealba, P.; Perez, P.; Contreras, R. J. Chem. Phys. 2000, 113, 2544. doi: 10.1063/1.1305879  doi: 10.1063/1.1305879

    23. [23]

      Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116, 8731. doi: 10.1063/1.1467338  doi: 10.1063/1.1467338

    24. [24]

      Bultinck, P.; Fias, S.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R. J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518  doi: 10.1063/1.2749518

    25. [25]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009.
       

    26. [26]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    27. [27]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396. doi: 10.1103/PhysRevLett.78.1396  doi: 10.1103/PhysRevLett.78.1396

    28. [28]

      Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129. doi: 10.1007/bf00549096  doi: 10.1007/bf00549096

    29. [29]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics Modell. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5  doi: 10.1016/0263-7855(96)00018-5

    30. [30]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x  doi: 10.1007/s00214-007-0310-x

    31. [31]

      Terrier, F.; Pouet, M. J.; Halle, J. C.; Hunt, S.; Jones, J. R.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 1993, 1665. doi: 10.1039/p29930001665  doi: 10.1039/p29930001665

    32. [32]

      Domingo, L. R.; Perez, P. Org. Biomol. Chem. 2011, 9, 7168. doi: 10.1039/c1ob05856h  doi: 10.1039/c1ob05856h

  • 加载中
    1. [1]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    2. [2]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    5. [5]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    10. [10]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    11. [11]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    14. [14]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    15. [15]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    18. [18]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    19. [19]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    20. [20]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

Metrics
  • PDF Downloads(6)
  • Abstract views(181)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return