Citation: JIANG Dongmei, BO Le, ZHU Ting, TAO Junbin, YANG Xiaoping. Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 812-817. doi: 10.3866/PKU.WHXB201801086 shu

Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters

  • Corresponding author: YANG Xiaoping, xpyang@wzu.edu.cn
  • Received Date: 14 December 2017
    Revised Date: 29 December 2017
    Accepted Date: 3 January 2018
    Available Online: 8 July 2018

    Fund Project: the National Natural Science Foundation of China 21771141The project was supported by the National Natural Science Foundation of China (21771141)

  • Heterometallic d-4f nanoclusters are currently of interest due to their potential use in material science and as probes in biology. Self-assembly by metal-ligand coordination is one of the most efficient processes that organize individual molecular components into nanosized species. However, for lanthanide-based self-assemblies, their stoichiometries and structures are difficult to control during synthesis, because the Ln(Ⅲ) ions often display high and variable coordination numbers. As a result, the structures of lanthanide complexes are commonly influenced by a variety of factors, such as the type of metal ions, the formation of ligands, and the nature of counter anions. In this article, two Zn-Ln nanoclusters [Ln2Zn2L2(OAc)6] (Ln = Yb (1) and Er (2)) were prepared using a new long Schiff base ligand with a Ph(CH2)Ph backbone. These nanoclusters show interesting rectangular-like structures. The long Schiff base ligand displays a "stretched" configuration and is bound to the metal ions through its N and phenoxide and methoxy O atoms. As a result, large clusters (0.7 nm × 1.1 nm × 2.2 nm for 1) were formed. In the crystal structures of 1 and 2, each Ln3+ ion and its closer Zn2+ ion are linked by one OAc- anion and phenolic oxygen atoms of two long Schiff base ligands, forming a ZnLn unit. Two such ZnLn units are then bridged by two Schiff base ligands to form the nano-rectangular structures. Energy dispersive X-ray spectroscopy (EDX) analyses of the clusters indicate that the molar ratio of Zn : Ln is about 1 : 1, in agreement with their crystal structures. Thermogravimetric analyses show that the clusters lose about 5% of the weight when heated to below 100 ℃. Melting point measurements show that the clusters are thermodynamically stable. Upon excitation of the ligand-centered absorption bands, 1 and 2 exhibit the NIR luminescence of Yb3+ and Er3+, respectively. The clusters show two excitation bands from 250 to 500 nm, in agreement with their absorption spectra, confirming that energy transfer occurs from the Zn/L centers to Ln3+ ions. These results indicate that the chromogenic Zn/L components in these nanoclusters can act as efficient sensitizers for lanthanide luminescence. The efficiencies of the energy transfer from Zn/L-centers to Yb3+ is higher than that to Er3+, being 75.71% and 25.00% for 1 and 2, respectively. These results provide new insights into the design of polynuclear nanoclusters with interesting luminescence properties.
  • 加载中
    1. [1]

      Li, M.; Tian, S.; Wu, Z.; Jin, R. Chem. Commun.2015, 4433. doi: 10.1039/c4cc08830a  doi: 10.1039/c4cc08830a

    2. [2]

      Yu, W. L.; Zuo, H. W.; Lu, C. H.; Li, Y.; Zhang, Y. F.; Chen, W. K. Acta Phys. -Chim. Sin. 2015, 31, 425.  doi: 10.3866/PKU.WHXB201501191

    3. [3]

      Kauffman, D. R.; Alfonso, D.; Matranga, C.; Ohodnicki, P.; Deng, X.; Siva, R. C.; Zeng, C.; Jin, R. Chem. Sci. 2014, 5, 3151. doi: 10.1039/c4sc00997e  doi: 10.1039/c4sc00997e

    4. [4]

      Qian, H.; Barry, E.; Zhu, Y.; Jin, R. Acta Phys. -Chim. Sin. 2011, 27, 513. doi: 10.3866/PKU.WHXB20110304  doi: 10.3866/PKU.WHXB20110304

    5. [5]

      Yang, J. L. Acta Phys. -Chim. Sin. 2017, 33, 1273.  doi: 10.3866/PKU.WHXB201704262

    6. [6]

      Peng, J. B.; Zhang, Q. C.; Kong, X. J.; Zheng, Y. Z.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng L. S.; Zheng, Z. J. Am. Chem. Soc. 2012, 134, 3314. doi: 10.1021/ja209752z  doi: 10.1021/ja209752z

    7. [7]

      Wang, B.; Zang, Z.; Wang, H.; Dou, W.; Tang, X.; Liu, W.; Shao, Y.; Ma, J.; Li, Y.; Zhou, J. Angew. Chem. Int. Ed. 2013, 52, 3756. doi: 10.1002/anie.201210172  doi: 10.1002/anie.201210172

    8. [8]

      Hemmila, I.; Webb, S. Drug Discovery Today1997, 2, 373. doi: 10.1016/s1359-6446(97)01080-5  doi: 10.1016/s1359-6446(97)01080-5

    9. [9]

      Ward, M. D. Coord. Chem. Rev.2010, 254, 2634. doi: 10.1016/j.ccr.2009.12.001  doi: 10.1016/j.ccr.2009.12.001

    10. [10]

      Vigato, R. A.; Peruzzo, V.; Tamburini, S. Coord. Chem. Rev. 2009, 253, 1099. doi: 10.1016/j.ccr.2008.07.013  doi: 10.1016/j.ccr.2008.07.013

    11. [11]

      Wen, V.; Zhao, Y.; Wang, L.; Zhang, M.; Gao, D. J. Rare Earths 2007, 25, 679. doi: 10.1016/s1002-0721(08)60006-x  doi: 10.1016/s1002-0721(08)60006-x

    12. [12]

      Brayshaw, P. A.; Bünzli, J. C. G.; Froidevaux, P.; Harrowfield, J. M.; Kim, Y.; Sobolev, A. N. Inorg. Chem. 1995, 34, 2068. doi: 10.1021/ic00112a019  doi: 10.1021/ic00112a019

    13. [13]

      Jankolovits, J.; Andolina, C. M.; Kampf, J. W.; Raymond, K. N.; Pecoraro, V. L. Angew. Chem. Int. Ed. 2011, 50, 9660. doi: 10.1002/anie.201103851  doi: 10.1002/anie.201103851

    14. [14]

      Yang, X. P.; Jones, R. A.; Huang, S. M. Coord. Chem. Rev. 2014, 273, 63. doi: 10.1016/j.ccr.2013.11.012  doi: 10.1016/j.ccr.2013.11.012

    15. [15]

      Yang, X. P.; Schipper, D.; Jones, R. A.; Lytwak, L. A.; Holliday, B. J.; Huang, S. M. J. Am. Chem. Soc.2013, 135, 8468. doi: 10.1021/ja4031243  doi: 10.1021/ja4031243

    16. [16]

      Yang, X. P.; Jones, R. A. J. Am. Chem. Soc. 2005, 127, 7686. doi: 10.1021/ja051292c  doi: 10.1021/ja051292c

    17. [17]

      Yang, X. P.; Jones, R. A.; Wong, W. K. Dalton Trans. 2008, 1676. doi: 10.1039/b801513a  doi: 10.1039/b801513a

    18. [18]

      Lo, W. K.; Wong, W. K.; Wong, W. Y.; Guo, J.; Yeung, K. T.; Cheng, Y. K.; Yang, X. P.; Jones, R. A. Inorg.Chem. 2006, 45, 9315. doi: 10.1021/ic0610177  doi: 10.1021/ic0610177

    19. [19]

      Yang, X. P.; Jones, R. A.; Wong, W. K.; Lynch, V.; Oye, M. M.; Holmes, A. L. Chem. Commun. 2006, 1836. doi: 10.1039/b518128c  doi: 10.1039/b518128c

    20. [20]

      Yang, X. P.; Chan, C.; Lam, D.; Schipper, D.; Stanley, J. M.; Chen, X.; Jones, R. A.; Holliday, B. J.; Wong, W. K.; Chen, S. C.; et al. Dalton Trans. 2012, 41, 11449. doi: 10.1039/c2dt31268a  doi: 10.1039/c2dt31268a

    21. [21]

      Lam, F.; Xu, J. X.; Chan, K. S. J. Org. Chem. 1996, 61, 8414. doi: 10.1021/jo961020f  doi: 10.1021/jo961020f

    22. [22]

      Meshkova, S. B.; Topilova, Z. M.; Bolshoy, D. V.; Beltyukova, S. V.; Tsvirko, M. P.; Venchikov, V. Y.; Ya, V. Acta Phys. Pol. A 1999, 95, 983. doi: 10.12693/aphyspola.95.983  doi: 10.12693/aphyspola.95.983

    23. [23]

      Klink, S. I.; Grave, L.; Reinhoudt, D. N.; van Veggel, F. C. J. M. J. Phys. Chem. A 2000, 104, 5457. doi: 10.1021/jp994286+  doi: 10.1021/jp994286+

    24. [24]

      Bünzli, J. C. G.; Piguet, C. Chem. Soc. Rev. 2005, 34, 1048. doi: 10.1039/b406082m  doi: 10.1039/b406082m

    25. [25]

      Shavaleev, N. M.; Accorsi, G.; Virgili, D.; Bell, D. R.; Lazarides, T.; Calogero, G.; Armaroli, N.; Ward, M. D. Inorg. Chem. 2005, 44, 61. doi: 10.1021/ic048875s  doi: 10.1021/ic048875s

    26. [26]

      Horrocks, W. D.; Bolender, J. P.; Smith, W. D.; Supkowski, R. M. J. Am. Chem. Soc. 1997, 119, 5972. doi: 10.1021/ja964421l  doi: 10.1021/ja964421l

    27. [27]

      Reinhard, C.; Gudel, H. U.Inorg. Chem. 2002, 41, 1048. doi: 10.1021/ic0108484  doi: 10.1021/ic0108484

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    3. [3]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    4. [4]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    5. [5]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    6. [6]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    7. [7]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    8. [8]

      Fengshun WangHuachao JiZefei WuKang ChenWenqi GaoChen WangLonglu WangJianmei ChenDafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898

    9. [9]

      Qiao WangZiling JiangChuang YuLiping LiGuangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006

    10. [10]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    11. [11]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    12. [12]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    13. [13]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    14. [14]

      Xinhui FangXinrui WangBin Ding . Applications of luminescent metal-organic frameworks as pioneering biosensors for biological and chemical detection. Chinese Chemical Letters, 2025, 36(8): 110453-. doi: 10.1016/j.cclet.2024.110453

    15. [15]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    18. [18]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    19. [19]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    20. [20]

      Ke WuXiuqin RuanShuolei JiaEnyuan WangQingfa Zhou . DABCO-catalyzed [3+4] annulations of Schiff bases with α-substituted allenes: Construction of functionalized benzazepine derivatives. Chinese Chemical Letters, 2025, 36(7): 110646-. doi: 10.1016/j.cclet.2024.110646

Metrics
  • PDF Downloads(9)
  • Abstract views(597)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return