Citation: YANG Lina, HUANG Li, SONG Xueyang, HE Wenxue, JIANG Yong, SUN Zhihu, WEI Shiqiang. In situ Study of Formation Kinetics of Au Nanoclusters during HCl and Dodecanethiol Etching[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 762-769. doi: 10.3866/PKU.WHXB201801084 shu

In situ Study of Formation Kinetics of Au Nanoclusters during HCl and Dodecanethiol Etching

  • Corresponding author: SUN Zhihu, zhsun@ustc.edu.cn WEI Shiqiang, sqwei@ustc.edu.cn
  • Received Date: 6 December 2017
    Revised Date: 30 December 2017
    Accepted Date: 2 January 2018
    Available Online: 8 July 2018

    Fund Project: The project was supported by the National Key Research and Development Program of China 2017YFA0402800the National Natural Science Foundation of China 11475176the National Natural Science Foundation of China 11621063the National Natural Science Foundation of China 21533007the National Natural Science Foundation of China U1632263The project was supported by the National Key Research and Development Program of China (2017YFA0402800) and the National Natural Science Foundation of China (11475176, U1632263, 21533007, and 11621063)

  • Gold nanoclusters are promising materials for a variety of applications because of their unique "superatom" structure, extraordinary stability, and discrete electronic energy levels. Controlled synthesis of well-defined Au nanoclusters strongly depends on rational design and implementation of their synthetic chemistry. Among the numerous approaches for the synthesis of monodisperse Au nanoclusters, etching of pre-formed polydisperse clusters has been widely employed as a top-down method. Understanding the formation mechanism of metal nanoclusters during the etching process is important. Herein, we synthesized monodisperse Au13(L3)2(SR)4Cl4 nanoclusters via an etching reaction between polydisperse 1, 3-bis(diphenyl-phosphino)propane (L3)-protected polydisperse Aun (15 ≤ n ≤ 60) clusters and a mixed solution of HCl/dodecanethiol (SR). The Au13 product, with a mean size of (1.1 ± 0.2) nm, shows pronounced step-like multiband absorption peaks centered at 327, 410, 433, and 700 nm. The synthetic protocol has a suitable reaction rate that allowss for real-time spectroscopic studies. We used a combination of in situ X-ray absorption fine structure (XAFS) spectroscopy, UV-Vis absorption spectroscopy, and matrix-assisted laser desorption ionization mass-spectrometry (MALDI-MS) to study the kinetic formation process of monodisperse Au13 nanoclusters. Emphasis was given to the detection of reaction intermediates. The study revealed that the size-conversion of the Au13 nanoclusters can be divided into three stages. In the first stage, the polydisperse Au15–Au60 clusters, covering a wide m/z range of 3000-13000, are prominently decomposed into smaller Au8-Au11 (within a m/z range of 3000–4000) species owing to the etching effect of HCl. They are immediately stabilized by the absorbed SR, L3, and Cl- ligands to form metastable intermediates, as indicated by the high intensity of the Au-ligand coordination peak at 0.190 nm as well as the low intensity of the Au–Au peaks (0.236 and 0.288 nm) in the Fourier-transform (FT) EXAFS spectra. In the second stage, these Au8–Au11 intermediates are grown into Au13 cores. The experimental X-ray absorption near-edge spectra, totally different from that of Au(Ⅰ)-SR polymer, could be well reproduced by the calculated spectrum of the Au13P8Cl4 cluster. The Au-ligand coordination number (1.0) obtained from the EXAFS fitting is much closer to the nominal values in Au13(L3)2(SR)4Cl4 (0.92) than to that in Au(Ⅰ)-SR polymers (2.0), suggesting that majority of the Au atoms are in the form of Au13 clusters. The driving force for this growth process is primarily the geometric factor to form a complete icosahedral Au13 skeleton through the incorporation of Au(Ⅰ) ions or Au(Ⅰ)-Cl oligomers pre-existing in the solution. In the third stage, the composition of the clusters is nearly unchanged as indicated by the MALDI-MS and the UV-vis spectra; however, their atomic structure undergoes rearrangement to the energetically stable structure of Au13(L3)2(SR)4Cl4. During this structural rearrangement, the central-peripheral and peripheral-peripheral Au–Au bond lengths (RAu-Au(c-p) and RAu-Au(p-p)) decrease from 0.272 to 0.267 nm and 0.295 to 0.289 nm, respectively, resulting in considerable structural distortion of the original icosahedral Au13 skeleton. This distortion is also reflected by the slightly increased disorder degree of the Au-Au bonds from 0.00015 to 0.00017 nm2. This work expands our understanding of the kinetic growth process of metal nanoclusters and promotes design and synthesis of metal nanomaterials in a controllable manner.
  • 加载中
    1. [1]

      Jin, R. C. Nanoscale 2010, 2, 343. doi: 10.1039/b9nr00160c  doi: 10.1039/b9nr00160c

    2. [2]

      Li, G.; Jin, R. C. Acc. Chem. Res. 2013, 46, 1749. doi: 10.1021/Ar300213z  doi: 10.1021/Ar300213z

    3. [3]

      Yau, S. H.; Varnavski, O.; Goodson, T. Acc. Chem. Res. 2013, 46, 1506. doi: 10.1021/Ar300280w  doi: 10.1021/Ar300280w

    4. [4]

      Lu, Y. Z.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594. doi: 10.1039/c2cs15325d  doi: 10.1039/c2cs15325d

    5. [5]

      Wang, C.; Yao, Y.; Song, Q. J. Mater. Chem. C 2015, 3, 5910. doi: 10.1039/c5tc00290g  doi: 10.1039/c5tc00290g

    6. [6]

      Jiang, D. E. Acta Phys. -Chim. Sin. 2010, 26, 999.  doi: 10.3866/PKU.WHXB20100414

    7. [7]

      Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Chem. Rev. 2016, 116, 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    8. [8]

      Sun, J.; Jin, Y. D. J. Mater. Chem. C2014, 2, 8000. doi: 10.1039/c4tc01489h  doi: 10.1039/c4tc01489h

    9. [9]

      Zhou, Y.; Li, G. Acta Phys. -Chim. Sin.2017, 33, 1297.  doi: 10.3866/PKU.WHXB201704101

    10. [10]

      Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. J. Am. Chem. Soc. 2008, 130, 1138. doi: 10.1021/ja0782448  doi: 10.1021/ja0782448

    11. [11]

      Wu, Z. K.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. C. J. Am. Chem. Soc. 2011, 133, 9670. doi: 10.1021/ja2028102  doi: 10.1021/ja2028102

    12. [12]

      Qian, H. F.; Zhu, Y.; Jin, R. C. Proc. Natl. Acad. Sci. USA 2012, 109, 696. doi: 10.1073/pnas.1115307109  doi: 10.1073/pnas.1115307109

    13. [13]

      Qian, H. F.; Zhu, Y.; Jin, R. C. ACS Nano2009, 3, 3795. doi: 10.1021/Nn901137h  doi: 10.1021/Nn901137h

    14. [14]

      Qian, H. F.; Zhu, M. Z.; Lanni, E.; Zhu, Y.; Bier, M. E.; Jin, R. C. J. Phys. Chem. C 2009, 113, 17599. doi: 10.1021/jp9073152  doi: 10.1021/jp9073152

    15. [15]

      Qian, H. F.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R. C. Inorg. Chem. 2011, 50, 10735. doi: 10.1021/Ic2012292  doi: 10.1021/Ic2012292

    16. [16]

      Qian, H. F.; Zhu, M. Z.; Andersen, U. N.; Jin, R. C. J. Phys. Chem. A 2009, 113, 4281. doi: 10.1021/Jp810893w  doi: 10.1021/Jp810893w

    17. [17]

      Shichibu, Y.; Konishi, K. Small 2010, 6, 1216. doi: 10.1002/smll.200902398  doi: 10.1002/smll.200902398

    18. [18]

      Shichibu, Y.; Suzuki, K.; Konishi, K. Nanoscale 2012, 4, 4125. doi: 10.1039/C2nr30675a  doi: 10.1039/C2nr30675a

    19. [19]

      Woehrle, G. H.; Brown, L. O.; Hutchison, J. E. J. Am. Chem. Soc. 2005, 127, 2172. doi: 10.1021/ja0457718  doi: 10.1021/ja0457718

    20. [20]

      Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T. Small 2007, 3, 835. doi: 10.1002/smll.200600611  doi: 10.1002/smll.200600611

    21. [21]

      Duan, H. W.; Nie, S. M. J. Am. Chem. Soc.2007, 129, 2412. doi: 10.1021/Ja067727t  doi: 10.1021/Ja067727t

    22. [22]

      Yang, L. N.; Cheng, H.; Jiang, Y.; Huang, T.; Bao, J.; Sun, Z. H.; Jiang, Z.; Ma, J. Y.; Sun, F. F.; Liu, Q. H.; et al.Nanoscale 2015, 7, 14452. doi: 10.1039/c5nr03711e  doi: 10.1039/c5nr03711e

    23. [23]

      Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. J. Phys. Chem. Lett. 2010, 1, 2903. doi: 10.1021/jz100944k  doi: 10.1021/jz100944k

    24. [24]

      Yu, Y.; Yao, Q. F.; Luo, Z. T.; Yuan, X.; Lee, J. Y.; Xie, J. P. Nanoscale 2013, 5, 4606. doi: 10.1039/C3nr00464c  doi: 10.1039/C3nr00464c

    25. [25]

      Zhang, J. W.; Zhou, Y.; Zheng, K.; Abroshan, H.; Kauffman, D. R.; Sun, J. L.; Li, G. Nano Res. 2017, doi: 10.1007/s12274-017-1935-2  doi: 10.1007/s12274-017-1935-2

    26. [26]

      Sun, Z. H.; Oyanagi, H.; Nakamura, H.; Jiang, Y.; Zhang, L.; Uehara, M.; Yamashita, K.; Fukano, A.; Maeda, H. J. Phys. Chem. C 2010, 114, 10126. doi: 10.1021/Jp101345n  doi: 10.1021/Jp101345n

    27. [27]

      Yao, T.; Sun, Z. H.; Li, Y. Y.; Pan, Z. Y.; Wei, H.; Xie, Y.; Nomura, M.; Niwa, Y.; Yan, W. S.; Wu, Z. Y.; et al. J. Am. Chem. Soc. 2010, 132, 7696. doi: 10.1021/Ja101101d  doi: 10.1021/Ja101101d

    28. [28]

      Yao, T.; Liu, S. J.; Sun, Z. H.; Li, Y. Y.; He, S.; Cheng, H.; Xie, Y.; Liu, Q. H.; Jiang, Y.; Wu, Z. Y.; et al. J. Am. Chem. Soc. 2012, 134, 9410. doi: 10.1021/Ja302642x  doi: 10.1021/Ja302642x

    29. [29]

      Li, Y. Y.; Cheng, H.; Yao, T.; Sun, Z. H.; Yan, W. S.; Jiang, Y.; Xie, Y.; Sun, Y. F.; Huang, Y. Y.; Liu, S. J.; et al.J. Am. Chem. Soc. 2012, 134, 17997. doi: 10.1021/Ja306923a  doi: 10.1021/Ja306923a

    30. [30]

      Sun, Z. H.; Liu, Q. H.; Yao, T.; Yan, W. S.; Wei, S. Q. Sci. China-Mater. 2015, 58, 313. doi: 10.1007/s40843-015-0043-4  doi: 10.1007/s40843-015-0043-4

    31. [31]

      Nimmala, P. R.; Dass, A. J. Am. Chem. Soc. 2011, 133, 9175. doi: 10.1021/ja201685f  doi: 10.1021/ja201685f

    32. [32]

      Meng, X.; Xu, Q.; Wang, S.; Zhu, M. Nanoscale 2012, 4, 4161.doi: 10.1039/c2nr30272a  doi: 10.1039/c2nr30272a

    33. [33]

      Zeng, C. J.; Liu, C. Y.; Pei, Y.; Jin, R. C.ACS Nano 2013, 7, 6138. doi: 10.1021/Nn401971g  doi: 10.1021/Nn401971g

    34. [34]

      Hall, K. P.; Mingos, D. M. P. Prog. Inorg. Chem. 1984, 32, 237. doi: 10.1002/9780470166338.Ch3  doi: 10.1002/9780470166338.Ch3

    35. [35]

      Zhang, P.; Sham, T. K. Phys. Rev. Lett.2003, 90, 245502. doi: 10.1103/PhysRevLett.90.245502  doi: 10.1103/PhysRevLett.90.245502

    36. [36]

      Jin, R. C.; Zhu, Y.; Qian, H. F. Chem.-Eur. J. 2011, 17, 6584. doi: 10.1002/chem.201002390  doi: 10.1002/chem.201002390

    37. [37]

      Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537. doi: 10.1107/S0909049505012719  doi: 10.1107/S0909049505012719

    38. [38]

      Newville, M. J. Synchrotron Rad. 2001, 8, 322. doi: 10.1107/S0909049500016964  doi: 10.1107/S0909049500016964

    39. [39]

      Briant, C. E.; Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, D. M. P. J. Chem. Soc. -Chem. Commun. 1981, 201. doi: 10.1039/C39810000201  doi: 10.1039/C39810000201

    40. [40]

      Menard, L. D.; Xu, H. P.; Gao, S. P.; Twesten, R. D.; Harper, A. S.; Song, Y.; Wang, G. L.; Douglas, A. D.; Yang, J. C.; Frenkel, A. I.; et al. J. Phys. Chem. B 2006, 110, 14564. doi: 10.1021/Jp060740f  doi: 10.1021/Jp060740f

    41. [41]

      Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Phys. Rev. B 1998, 58, 7565. doi: 10.1103/PhysRevB.58.756  doi: 10.1103/PhysRevB.58.756

  • 加载中
    1. [1]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    2. [2]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    3. [3]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    4. [4]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    5. [5]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    6. [6]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    7. [7]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    8. [8]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    12. [12]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    13. [13]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    14. [14]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    15. [15]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    16. [16]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    17. [17]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    20. [20]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

Metrics
  • PDF Downloads(6)
  • Abstract views(496)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return