Citation: VON SZENTPÁLY László. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 675-682. doi: 10.3866/PKU.WHXB201801021 shu

Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters

  • Corresponding author: VON SZENTPÁLY László, lszentpaly@yahoo.com
  • Received Date: 30 October 2017
    Revised Date: 25 December 2017
    Accepted Date: 25 December 2017
    Available Online: 2 June 2018

  • The addition of electrons to form gas-phase multiply charged anions (MCAs) normally requires sophisticated experiments or calculations.In this work, the factors stabilizing the MCAs, the maximum electron uptake of gas-phase molecules, X, and the electronic stability of MCAs XQ-, are discussed. The drawbacks encountered when applying computational and/or conceptual density functional theory (DFT) to MCAs are highlighted. We develop and test a different model based on the valence-state concept. As in DFT, the electronic energy, E(N, vex), is a continuous function of the average electron number, N, and the external potential, vex, of the nuclei. The valence-state-parabola is a second-order polynomial that allows extending E(N, vex) to dianions and higher MCAs. The model expresses the maximum electron acceptance, Qmax, and the higher electron affinities, AQ, as simple functions of the first electron affinity, A1, and the ionization energy, I, of the "ancestor" system. Thus, the maximum electron acceptance is Qmax, calc = 1 + 12A1/7(I -A1). The ground-state parabola model of the conceptual DFT yields approximately half of this value, and it is termed Qmax, GS = \begin{document}${}^{1}\!\!\diagup\!\!{}_{2}\; $\end{document} + A1/(I -A1). A large variety of molecules are evaluated including fullerenes, metal clusters, super-pnictogens, super-halogens (OF3), super-alkali species (OLi3), and neutral or charged transition-metal complexes, ABmLn0/+/-. The calculated second electron affinity A2, calc = A1-(7/12)(I -A1) is linearly correlated to the literature references A2, lit with a correlation coefficient R = 0.998. A2 or A3 values are predicted for further 24 species. The appearance sizes, nap3-, of triply charged anionic clusters and fullerenes are calculated in agreement with the literature.
  • 加载中
    1. [1]

      Pearson, R. G. Chemical Hardness; Wiley-VCH: Weinheim, Germany, 1997. doi: 10.1002/3527606173  doi: 10.1002/3527606173

    2. [2]

      Sommerfeld, T.; Weber, R. J. J. Phys. Chem. A 2011, 115, 6675. doi: 10.1021/jp202817d  doi: 10.1021/jp202817d

    3. [3]

      Walters, T.; Wang, X. B.; Wang, L. -S. Coord. Chem. Rev. 2007, 251, 474. doi:10.1016/j.ccr.2006.04.010  doi: 10.1016/j.ccr.2006.04.010

    4. [4]

      Herlert, A.; Kruckeberg, S.; Schweikhard, L.; Vogel, M.; Walther, C. Phys. Scr 1999, T80, 200. doi: 10.1238/Physica.Topical.080a00200  doi: 10.1238/Physica.Topical.080a00200

    5. [5]

      Franzreb, K.; Wiliams, P. J. Chem. Phys. 2005, 123, 224312. doi: 10.1063/1.2136154  doi: 10.1063/1.2136154

    6. [6]

      Walsh, N.; Martinez, F.; Marx, G., Schweikhard, L., Ziegler, F. J. Chem. Phys. 2010, 132, 014308. doi:10.1063/1.3270153  doi: 10.1063/1.3270153

    7. [7]

      Wong, A. Y.; Mamas, D. L.; Arnush, D. Phys. Fluids 1975, 18, 1489. doi: 10.1063/1.861034  doi: 10.1063/1.861034

    8. [8]

      Wang, X. B.; Wang, L. S. Photoelectron Spectroscopy of Multiply Charged Anions. In Annual Review Physical Chemistry; Annual Reviews Inc.: Palo Alto, CA, USA, 2009; Vol. 60, pp. 105-126.
       

    9. [9]

      Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125. doi: 10.1021/cr010203l  doi: 10.1021/cr010203l

    10. [10]

      Tallgren, L. Acta Med. Scand. Suppl. 1980, 640, 1.

    11. [11]

      Lee, A.; Dawson, P. A.; Markovich, D. Int. J. Biochem. Cell Biol. 2005, 37, 1350. doi: 10.1016/j.biocel.2005.02.013  doi: 10.1016/j.biocel.2005.02.013

    12. [12]

      Ramanathan, V.; Crutzen, P. J.; Kiehl, J. T.; Rosenfeld, D. Science 2001, 294, 2119. doi: 10.1126/science.1064034  doi: 10.1126/science.1064034

    13. [13]

      Scheller, M. K.; Compton, R. N.; Cederbaum, L. S. Science 1995, 270, 1160. doi: 10.1126/science.270.5239.1160  doi: 10.1126/science.270.5239.1160

    14. [14]

      Boldyrev, A. I.; Gutowski, M.; Simons, J. Acc. Chem. Res. 1996, 29, 497. doi: 10.1021/ar960147o  doi: 10.1021/ar960147o

    15. [15]

      Dreuw, A.; Cederbaum, L. S. Chem. Rev. 2002, 102, 181. doi: 10.1021/cr0104227  doi: 10.1021/cr0104227

    16. [16]

      Feuerbacher, S.; Cederbaum, L. S. J. Phys. Chem. A 2005, 109, 11401. doi: 10.1021/jp053305e  doi: 10.1021/jp053305e

    17. [17]

      von Szentpály, L. J. Phys. Chem. A 2010, 114, 10891. doi: 10.1021/jp107177d  doi: 10.1021/jp107177d

    18. [18]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989.

    19. [19]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. doi: 10.1021/ja00364a005  doi: 10.1021/ja00364a005

    20. [20]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112, 289. doi: 10.1021/cr200107z  doi: 10.1021/cr200107z

    21. [21]

      Parr, R. G.; von Szentpály, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x  doi: 10.1021/ja983494x

    22. [22]

      Bergmann, D.; Hinze, J. Angew. Chem. Int. Ed. 1996, 35, 150; with earlier references quoted therein. doi: 10.1002/anie.199601501  doi: 10.1002/anie.199601501

    23. [23]

      von Szentpály, L. J. Mol. Struct. THEOCHEM 1991, 233, 71. doi: 10.1016/0166-1280(91)85055-C  doi: 10.1016/0166-1280(91)85055-C

    24. [24]

      von Szentpály, L. Int. J. Quantum Chem. 2000, 76, 222. doi: 10.1002/(SICI)1097-461X(2000)76:2 < 222::AID-QUA11 > 3.0.CO; 2-6  doi: 10.1002/(SICI)1097-461X(2000)76:2<222::AID-QUA11>3.0.CO;2-6

    25. [25]

      Glasser, L.; von Szentpály, L. J. Am. Chem. Soc. 2006, 128, 12314. doi: 10.1021/ja063812p  doi: 10.1021/ja063812p

    26. [26]

      Datta, D.; Shee, N. K.; von Szentpály, L. J. Phys. Chem. A 2013, 117, 200. doi: 10.1021/jp3103386  doi: 10.1021/jp3103386

    27. [27]

      von Szentpály, L. J. Phys. Chem. A 2015, 119, 1715. doi: 10.1021/jp5084345  doi: 10.1021/jp5084345

    28. [28]

      Sen, K. D.; Boehm, M. C.; Schmidt, P. C. Structure and Bonding; Springer-Verlag: Berlin, Germany, 1987; Vol. 66, p. 99.

    29. [29]

      Janak, J. F. Phys. Rev. B 1978, 18, 7165. doi: 10.1103/PhysRevB.18.7165  doi: 10.1103/PhysRevB.18.7165

    30. [30]

      Jensen, F. J. Chem. Theory Comput. 2010, 6, 2736. doi: 10.1021/ct1003548  doi: 10.1021/ct1003548

    31. [31]

      Kim, M. -C.; Sim, E.; Burke, K. J. Chem. Phys. 2011, 134, 171103. doi: 10.1063/1.3590364  doi: 10.1063/1.3590364

    32. [32]

      Wade, K. Chem. Commun. 1971, 792. doi: 10.1039/c29710000792  doi: 10.1039/c29710000792

    33. [33]

      Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311. doi: 10.1021/ar00105a003  doi: 10.1021/ar00105a003

    34. [34]

      Zhao, T.; Zhou, J.; Wang, Q.; Jena, P. Angew. Chem. Int. Ed. 2017, 56, 13421. doi: 10.1002/anie.201706764.  doi: 10.1002/anie.201706764

    35. [35]

      Herlert, A.; Schweighardt, L. Int. J. Mass Spectrom. 2003, 229, 19. doi: 10.1016/S1387-3806(03)00251-3  doi: 10.1016/S1387-3806(03)00251-3

    36. [36]

      Yannouleas, C.; Landman, U. Chem. Phys. Lett. 1993, 210, 437. doi: 10.1016/0009-2614(93)87050-D  doi: 10.1016/0009-2614(93)87050-D

    37. [37]

      de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611. doi: 10.1103/RevModPhys.65.611  doi: 10.1103/RevModPhys.65.611

    38. [38]

      Gutsev, G. L. Chem. Phys. Lett. 1991, 184, 305. doi: 10.1016/0009-2614(91)85128-J  doi: 10.1016/0009-2614(91)85128-J

    39. [39]

      Pernpointner, M.; Cederbaum, L. S. J. Chem. Phys. 2007, 126, 144310. doi: 10.1063/1.2721531  doi: 10.1063/1.2721531

    40. [40]

      Wesendrup, R.; Schwerdtfeger, P. Inorg. Chem. 2001, 40, 3351. doi: 10.1021/ic010169t  doi: 10.1021/ic010169t

    41. [41]

      Craciun, R.; Picone, D.; Long, R. T.; Li, S.; Dixon, D. A.; Peterson, K. A.; Christe, K. O. Inorg. Chem. 2010, 49, 1056. doi: 10.1021/ic901967h  doi: 10.1021/ic901967h

    42. [42]

      Craciun, R.; Long, R. T.; Dixon, D. A.; Christe, K. O. J. Phys. Chem. A 2010, 114, 7571. doi: 10.1021/jp1022949  doi: 10.1021/jp1022949

    43. [43]

      Macgregor, S.A.; Moock, K. H. Inorg. Chem. 1998, 37, 3284. doi: 10.1021/ic9605736  doi: 10.1021/ic9605736

    44. [44]

      Seppelt, K. Chem. Rev. 2015, 115, 1296. doi: 10.1021/cr5001783  doi: 10.1021/cr5001783

    45. [45]

      Pradhan, K.; Gutsev, G. L.; Weatherford, C. A.; Jena, P. J. Chem. Phys. 2011, 134, 144305. doi: 10.1063/1.3570578  doi: 10.1063/1.3570578

    46. [46]

      Uzunova, E. L. J. Phys. Chem. A 2011, 115, 10665. doi: 10.1021/jp2034888  doi: 10.1021/jp2034888

    47. [47]

      Zhou, M.; Andrews, L.; Ismail, N.; Marsden, C. J. Phys. Chem. 2000, 104, 5495. doi: 10.1021/jp000292q  doi: 10.1021/jp000292q

    48. [48]

      Zein, S.; Ortiz, J. V. J. Chem. Phys. 2011, 135, 164307. doi: 10.1063/1.3636082  doi: 10.1063/1.3636082

    49. [49]

      Zein, S.; Ortiz, J. V. J. Chem. Phys. 2012, 136, 224305. doi: 10.1063/1.4728073  doi: 10.1063/1.4728073

    50. [50]

      Anusiewicz, I.; Freza, S.; Sikorska, C.; Skurski, P. Chem. Phys. Lett. 2010, 493, 234. doi: 10.1016/j.cplett.2010.05.058  doi: 10.1016/j.cplett.2010.05.058

    51. [51]

      Boltanina, O. V.; Ioffé, I. N.; Sidorov, L. N.; Seifert, G.; Vietze, K. J. Am. Chem. Soc. 2000, 122, 9745. doi: 10.1021/ja000734b  doi: 10.1021/ja000734b

    52. [52]

      Hampe, O.; Neumaier, M.; Blom, M. N.; Kappes, M. M. Chem. Phys. Lett. 2002, 354, 303. doi: 10.1016/S0009-2614(02)00124-0  doi: 10.1016/S0009-2614(02)00124-0

    53. [53]

      Wang, X. -B.; Woo, H. -K.; Yang, J.; Kappes, M. M.; Wang, L. -S. J. Phys. Chem. C 2007, 111, 17684. doi: 10.1021/jp0703861  doi: 10.1021/jp0703861

    54. [54]

      Wang, X. -B.; Woo, H. -K.; Huang, X.; Kappes, M. M.; Wang, L. -S. Phys. Rev. Lett. 2006, 96, 143002. doi: 10.1103/PhysRevLett.96.143002  doi: 10.1103/PhysRevLett.96.143002

    55. [55]

      Nasibullaev, S. K.; Davletbaeva, G. D.; Vasil'ev, Z. V.; Nasibullayev, I. S. Fuller. Nanotub. Carbon Nanostruct. 2004, 12, 491. doi: 10.1081/FST-120027212  doi: 10.1081/FST-120027212

    56. [56]

      Wang, X. -B.; Chi, C.; Zhou, M.; Kuvychko, I. V.; Seppelt, K.; Popov, A. A.; Strauss, S. H., Boltalina, O.; Wang, L. -S. J. Phys. Chem. A 2010, 114, 1756. doi: 10.1021/jp9097364  doi: 10.1021/jp9097364

    57. [57]

      Caddeo, C.; Malloci, G.; De Angelis, F.; Colombo, L.; Mattoni, A. Phys. Chem. Chem. Phys. 2012, 14, 14293. doi: 10.1039/c2cp42037f  doi: 10.1039/c2cp42037f

    58. [58]

      Belau, L.; Wheeler, S. W.; Ticknor, B. W.; Ahmed, M.; Leone, S. R.; Allen, W. D., Schaefer, H. F.; Duncan, M. A. J. Am. Chem. Soc. 2007, 129, 10229. doi: 10.1021/ja072526q  doi: 10.1021/ja072526q

    59. [59]

      Ortíz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1994, 100, 6614. doi: 10.1063/1.467071  doi: 10.1063/1.467071

    60. [60]

      Ortíz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1995, 102, 294. doi: 10.1063/1.469402  doi: 10.1063/1.469402

    61. [61]

      Sommerfeld, T. J. Phys. Chem. A 2000, 104, 8806. doi: 10.1021/jp0017590  doi: 10.1021/jp0017590

    62. [62]

      Wang, J.; Yang, M.; Jellinek, J.; Wang, G. Phys. Rev. 2006, A74, 023202. doi: 10.1103/PhysRevA.74.023202  doi: 10.1103/PhysRevA.74.023202

    63. [63]

      Kostko, O. Photoelectron Spectroscopy of Mass-selected Sodium, Coinage Metal and Divalent Metal Cluster Anions; Ph. D. Thesis, Universität Freiburg: Freiburg, Germany, 2007. www.freidok.uni-freiburg.de

    64. [64]

      Yannouleas, C.; Landman, U. Phys. Rev. B 2000, 61, R10587. doi: 10.1103/PhysRevB.61.15895  doi: 10.1103/PhysRevB.61.15895

    65. [65]

      Berkowitz, J.; Lifshitz, G. J. Chem. Phys. 1968, 48, 4346. doi: 10.1063/1.1667997  doi: 10.1063/1.1667997

    66. [66]

      Jin, Y.; Maroulis, G.; Kuang, X.; Ding, L.; Lu, C.; Wang, J.; Lv, J.; Zhang, C.; Ju, M. Phys. Chem. Chem. Phys. 2015, 17, 13590. doi: 10.1039/c5cp00728c  doi: 10.1039/c5cp00728c

    67. [67]

      Zakrzewski, V. C.; von Niessen, W. Theor. Chim. Acta 1994, 88, 75. doi: 10.1007/BF01113735  doi: 10.1007/BF01113735

    68. [68]

      Berghof, V; Sommerfeld, T; Cederbaum, L. S. J. Phys. Chem. A 1998, 102, 5100. doi: 10.1021/jp9808375  doi: 10.1021/jp9808375

    69. [69]

      Kaplan, I. G.; Dolgounitcheva, O.; Watts, J. D.; Ortiz, J. V. J. Chem. Phys. 2002, 117, 3687. doi: 10.1063/1.1494801  doi: 10.1063/1.1494801

    70. [70]

      Roy, D. R.; Chattaraj, P. K. J. Phys. Chem. A 2008, 112, 1612. doi: 10.1021/jp710820c  doi: 10.1021/jp710820c

    71. [71]

      von Szentpály, L. J. Mol. Model 2017, 23, 217. doi: 10.1007/s00894-017-3383-z  doi: 10.1007/s00894-017-3383-z

    72. [72]

      Sabzyan, H.; Noorisafa, Z.; Keshavarz, E. Spectrochim. Acta A 2014, 117, 95. doi: 10.1016/j.saa.2013.07.111  doi: 10.1016/j.saa.2013.07.111

    73. [73]

      Zakrzewski, V. G.; Dolgounitcheva, O.; Ortiz, J. V. J. Chem. Phys. 1996, 105, 5872. doi: 10.1063/1.472428  doi: 10.1063/1.472428

    74. [74]

      Zhu, G. -Z. Wang, L. -S. J. Chem. Phys. 2015, 143, 221102. doi: 10.1063/1.4937761  doi: 10.1063/1.4937761

    75. [75]

      Nielsen, S. B.; Nielsen, M. B. J. Chem. Phys. 2003, 119, 10069. doi: 10.1063/1.1618216  doi: 10.1063/1.1618216

    76. [76]

      Assadollahzadeh, B.; Thierfelder, C.; Schwerdtfeger, P. Phys. Rev. B 2008, 78, 245423. doi: 10.1103/PhysRevB.78.245423  doi: 10.1103/PhysRevB.78.245423

    77. [77]

      Haynes, W. M.; Lide, R. D. Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, USA, 2011-2012.

    78. [78]

      Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Ion Energetics Data in NIST Chemistry Webbook; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, Maryland, USA, 2015.

    79. [79]

      Richard, R. M.; Marshall, M. S.; Dolgounitcheva, O.; Ortiz, J. V.; Brédas, J. -L.; Marom, N.; Sherrill, C. D. J. Chem. Theory Comput. 2016, 12, 595. doi: 10.1021/acs.jctc.5b00875  doi: 10.1021/acs.jctc.5b00875

    80. [80]

      Wang, X. B.; Wang, L. -S. J. Phys. Chem. A 2000, 104, 4429. doi: 10.1021/jp000362t  doi: 10.1021/jp000362t

    81. [81]

      Gutsev, G. L.; Boldyrev, A. I. Mol. Phys. 1984, 53, 23. doi: 10.1080/00268978400102111  doi: 10.1080/00268978400102111

    82. [82]

      von Szentpály, L. J. Phys. Chem. A 2011, 115, 8528. doi: 10.1021/jp203319y  doi: 10.1021/jp203319y

    83. [83]

      Walsh, N. Multiply-Negatively Charged Aluminum Clusters and Fullerenes; Ph. D. Thesis, Universität Greifswald, Greifswald, Germany, 2008. ub-ed.ub.unigreifswald.de/opus/volltexte/2008/.../ Diss_Walsh.pdf

    84. [84]

      Taylor, K. J.; Pettiette-Hall, C. L.; Chesnovsky, O.; Smalley, R. E. J. Chem. Phys. 1992, 96, 3319. doi: 10.1063/1.461927  doi: 10.1063/1.461927

  • 加载中
    1. [1]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    4. [4]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    5. [5]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    6. [6]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    7. [7]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    8. [8]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    9. [9]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    10. [10]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    11. [11]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    12. [12]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    13. [13]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    14. [14]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    15. [15]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    16. [16]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    17. [17]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    18. [18]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    19. [19]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(8)
  • Abstract views(226)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return