Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters
- Corresponding author: VON SZENTPÁLY László, lszentpaly@yahoo.com
Citation: VON SZENTPÁLY László. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 675-682. doi: 10.3866/PKU.WHXB201801021
Pearson, R. G. Chemical Hardness; Wiley-VCH: Weinheim, Germany, 1997. doi: 10.1002/3527606173
doi: 10.1002/3527606173
Sommerfeld, T.; Weber, R. J. J. Phys. Chem. A 2011, 115, 6675. doi: 10.1021/jp202817d
doi: 10.1021/jp202817d
Walters, T.; Wang, X. B.; Wang, L. -S. Coord. Chem. Rev. 2007, 251, 474. doi:10.1016/j.ccr.2006.04.010
doi: 10.1016/j.ccr.2006.04.010
Herlert, A.; Kruckeberg, S.; Schweikhard, L.; Vogel, M.; Walther, C. Phys. Scr 1999, T80, 200. doi: 10.1238/Physica.Topical.080a00200
doi: 10.1238/Physica.Topical.080a00200
Franzreb, K.; Wiliams, P. J. Chem. Phys. 2005, 123, 224312. doi: 10.1063/1.2136154
doi: 10.1063/1.2136154
Walsh, N.; Martinez, F.; Marx, G., Schweikhard, L., Ziegler, F. J. Chem. Phys. 2010, 132, 014308. doi:10.1063/1.3270153
doi: 10.1063/1.3270153
Wong, A. Y.; Mamas, D. L.; Arnush, D. Phys. Fluids 1975, 18, 1489. doi: 10.1063/1.861034
doi: 10.1063/1.861034
Wang, X. B.; Wang, L. S. Photoelectron Spectroscopy of Multiply Charged Anions. In Annual Review Physical Chemistry; Annual Reviews Inc.: Palo Alto, CA, USA, 2009; Vol. 60, pp. 105-126.
Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125. doi: 10.1021/cr010203l
doi: 10.1021/cr010203l
Tallgren, L. Acta Med. Scand. Suppl. 1980, 640, 1.
Lee, A.; Dawson, P. A.; Markovich, D. Int. J. Biochem. Cell Biol. 2005, 37, 1350. doi: 10.1016/j.biocel.2005.02.013
doi: 10.1016/j.biocel.2005.02.013
Ramanathan, V.; Crutzen, P. J.; Kiehl, J. T.; Rosenfeld, D. Science 2001, 294, 2119. doi: 10.1126/science.1064034
doi: 10.1126/science.1064034
Scheller, M. K.; Compton, R. N.; Cederbaum, L. S. Science 1995, 270, 1160. doi: 10.1126/science.270.5239.1160
doi: 10.1126/science.270.5239.1160
Boldyrev, A. I.; Gutowski, M.; Simons, J. Acc. Chem. Res. 1996, 29, 497. doi: 10.1021/ar960147o
doi: 10.1021/ar960147o
Dreuw, A.; Cederbaum, L. S. Chem. Rev. 2002, 102, 181. doi: 10.1021/cr0104227
doi: 10.1021/cr0104227
Feuerbacher, S.; Cederbaum, L. S. J. Phys. Chem. A 2005, 109, 11401. doi: 10.1021/jp053305e
doi: 10.1021/jp053305e
von Szentpály, L. J. Phys. Chem. A 2010, 114, 10891. doi: 10.1021/jp107177d
doi: 10.1021/jp107177d
Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989.
Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. doi: 10.1021/ja00364a005
doi: 10.1021/ja00364a005
Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112, 289. doi: 10.1021/cr200107z
doi: 10.1021/cr200107z
Parr, R. G.; von Szentpály, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x
doi: 10.1021/ja983494x
Bergmann, D.; Hinze, J. Angew. Chem. Int. Ed. 1996, 35, 150; with earlier references quoted therein. doi: 10.1002/anie.199601501
doi: 10.1002/anie.199601501
von Szentpály, L. J. Mol. Struct. THEOCHEM 1991, 233, 71. doi: 10.1016/0166-1280(91)85055-C
doi: 10.1016/0166-1280(91)85055-C
von Szentpály, L. Int. J. Quantum Chem. 2000, 76, 222. doi: 10.1002/(SICI)1097-461X(2000)76:2 < 222::AID-QUA11 > 3.0.CO; 2-6
doi: 10.1002/(SICI)1097-461X(2000)76:2<222::AID-QUA11>3.0.CO;2-6
Glasser, L.; von Szentpály, L. J. Am. Chem. Soc. 2006, 128, 12314. doi: 10.1021/ja063812p
doi: 10.1021/ja063812p
Datta, D.; Shee, N. K.; von Szentpály, L. J. Phys. Chem. A 2013, 117, 200. doi: 10.1021/jp3103386
doi: 10.1021/jp3103386
von Szentpály, L. J. Phys. Chem. A 2015, 119, 1715. doi: 10.1021/jp5084345
doi: 10.1021/jp5084345
Sen, K. D.; Boehm, M. C.; Schmidt, P. C. Structure and Bonding; Springer-Verlag: Berlin, Germany, 1987; Vol. 66, p. 99.
Janak, J. F. Phys. Rev. B 1978, 18, 7165. doi: 10.1103/PhysRevB.18.7165
doi: 10.1103/PhysRevB.18.7165
Jensen, F. J. Chem. Theory Comput. 2010, 6, 2736. doi: 10.1021/ct1003548
doi: 10.1021/ct1003548
Kim, M. -C.; Sim, E.; Burke, K. J. Chem. Phys. 2011, 134, 171103. doi: 10.1063/1.3590364
doi: 10.1063/1.3590364
Wade, K. Chem. Commun. 1971, 792. doi: 10.1039/c29710000792
doi: 10.1039/c29710000792
Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311. doi: 10.1021/ar00105a003
doi: 10.1021/ar00105a003
Zhao, T.; Zhou, J.; Wang, Q.; Jena, P. Angew. Chem. Int. Ed. 2017, 56, 13421. doi: 10.1002/anie.201706764.
doi: 10.1002/anie.201706764
Herlert, A.; Schweighardt, L. Int. J. Mass Spectrom. 2003, 229, 19. doi: 10.1016/S1387-3806(03)00251-3
doi: 10.1016/S1387-3806(03)00251-3
Yannouleas, C.; Landman, U. Chem. Phys. Lett. 1993, 210, 437. doi: 10.1016/0009-2614(93)87050-D
doi: 10.1016/0009-2614(93)87050-D
de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611. doi: 10.1103/RevModPhys.65.611
doi: 10.1103/RevModPhys.65.611
Gutsev, G. L. Chem. Phys. Lett. 1991, 184, 305. doi: 10.1016/0009-2614(91)85128-J
doi: 10.1016/0009-2614(91)85128-J
Pernpointner, M.; Cederbaum, L. S. J. Chem. Phys. 2007, 126, 144310. doi: 10.1063/1.2721531
doi: 10.1063/1.2721531
Wesendrup, R.; Schwerdtfeger, P. Inorg. Chem. 2001, 40, 3351. doi: 10.1021/ic010169t
doi: 10.1021/ic010169t
Craciun, R.; Picone, D.; Long, R. T.; Li, S.; Dixon, D. A.; Peterson, K. A.; Christe, K. O. Inorg. Chem. 2010, 49, 1056. doi: 10.1021/ic901967h
doi: 10.1021/ic901967h
Craciun, R.; Long, R. T.; Dixon, D. A.; Christe, K. O. J. Phys. Chem. A 2010, 114, 7571. doi: 10.1021/jp1022949
doi: 10.1021/jp1022949
Macgregor, S.A.; Moock, K. H. Inorg. Chem. 1998, 37, 3284. doi: 10.1021/ic9605736
doi: 10.1021/ic9605736
Seppelt, K. Chem. Rev. 2015, 115, 1296. doi: 10.1021/cr5001783
doi: 10.1021/cr5001783
Pradhan, K.; Gutsev, G. L.; Weatherford, C. A.; Jena, P. J. Chem. Phys. 2011, 134, 144305. doi: 10.1063/1.3570578
doi: 10.1063/1.3570578
Uzunova, E. L. J. Phys. Chem. A 2011, 115, 10665. doi: 10.1021/jp2034888
doi: 10.1021/jp2034888
Zhou, M.; Andrews, L.; Ismail, N.; Marsden, C. J. Phys. Chem. 2000, 104, 5495. doi: 10.1021/jp000292q
doi: 10.1021/jp000292q
Zein, S.; Ortiz, J. V. J. Chem. Phys. 2011, 135, 164307. doi: 10.1063/1.3636082
doi: 10.1063/1.3636082
Zein, S.; Ortiz, J. V. J. Chem. Phys. 2012, 136, 224305. doi: 10.1063/1.4728073
doi: 10.1063/1.4728073
Anusiewicz, I.; Freza, S.; Sikorska, C.; Skurski, P. Chem. Phys. Lett. 2010, 493, 234. doi: 10.1016/j.cplett.2010.05.058
doi: 10.1016/j.cplett.2010.05.058
Boltanina, O. V.; Ioffé, I. N.; Sidorov, L. N.; Seifert, G.; Vietze, K. J. Am. Chem. Soc. 2000, 122, 9745. doi: 10.1021/ja000734b
doi: 10.1021/ja000734b
Hampe, O.; Neumaier, M.; Blom, M. N.; Kappes, M. M. Chem. Phys. Lett. 2002, 354, 303. doi: 10.1016/S0009-2614(02)00124-0
doi: 10.1016/S0009-2614(02)00124-0
Wang, X. -B.; Woo, H. -K.; Yang, J.; Kappes, M. M.; Wang, L. -S. J. Phys. Chem. C 2007, 111, 17684. doi: 10.1021/jp0703861
doi: 10.1021/jp0703861
Wang, X. -B.; Woo, H. -K.; Huang, X.; Kappes, M. M.; Wang, L. -S. Phys. Rev. Lett. 2006, 96, 143002. doi: 10.1103/PhysRevLett.96.143002
doi: 10.1103/PhysRevLett.96.143002
Nasibullaev, S. K.; Davletbaeva, G. D.; Vasil'ev, Z. V.; Nasibullayev, I. S. Fuller. Nanotub. Carbon Nanostruct. 2004, 12, 491. doi: 10.1081/FST-120027212
doi: 10.1081/FST-120027212
Wang, X. -B.; Chi, C.; Zhou, M.; Kuvychko, I. V.; Seppelt, K.; Popov, A. A.; Strauss, S. H., Boltalina, O.; Wang, L. -S. J. Phys. Chem. A 2010, 114, 1756. doi: 10.1021/jp9097364
doi: 10.1021/jp9097364
Caddeo, C.; Malloci, G.; De Angelis, F.; Colombo, L.; Mattoni, A. Phys. Chem. Chem. Phys. 2012, 14, 14293. doi: 10.1039/c2cp42037f
doi: 10.1039/c2cp42037f
Belau, L.; Wheeler, S. W.; Ticknor, B. W.; Ahmed, M.; Leone, S. R.; Allen, W. D., Schaefer, H. F.; Duncan, M. A. J. Am. Chem. Soc. 2007, 129, 10229. doi: 10.1021/ja072526q
doi: 10.1021/ja072526q
Ortíz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1994, 100, 6614. doi: 10.1063/1.467071
doi: 10.1063/1.467071
Ortíz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1995, 102, 294. doi: 10.1063/1.469402
doi: 10.1063/1.469402
Sommerfeld, T. J. Phys. Chem. A 2000, 104, 8806. doi: 10.1021/jp0017590
doi: 10.1021/jp0017590
Wang, J.; Yang, M.; Jellinek, J.; Wang, G. Phys. Rev. 2006, A74, 023202. doi: 10.1103/PhysRevA.74.023202
doi: 10.1103/PhysRevA.74.023202
Kostko, O. Photoelectron Spectroscopy of Mass-selected Sodium, Coinage Metal and Divalent Metal Cluster Anions; Ph. D. Thesis, Universität Freiburg: Freiburg, Germany, 2007. www.freidok.uni-freiburg.de
Yannouleas, C.; Landman, U. Phys. Rev. B 2000, 61, R10587. doi: 10.1103/PhysRevB.61.15895
doi: 10.1103/PhysRevB.61.15895
Berkowitz, J.; Lifshitz, G. J. Chem. Phys. 1968, 48, 4346. doi: 10.1063/1.1667997
doi: 10.1063/1.1667997
Jin, Y.; Maroulis, G.; Kuang, X.; Ding, L.; Lu, C.; Wang, J.; Lv, J.; Zhang, C.; Ju, M. Phys. Chem. Chem. Phys. 2015, 17, 13590. doi: 10.1039/c5cp00728c
doi: 10.1039/c5cp00728c
Zakrzewski, V. C.; von Niessen, W. Theor. Chim. Acta 1994, 88, 75. doi: 10.1007/BF01113735
doi: 10.1007/BF01113735
Berghof, V; Sommerfeld, T; Cederbaum, L. S. J. Phys. Chem. A 1998, 102, 5100. doi: 10.1021/jp9808375
doi: 10.1021/jp9808375
Kaplan, I. G.; Dolgounitcheva, O.; Watts, J. D.; Ortiz, J. V. J. Chem. Phys. 2002, 117, 3687. doi: 10.1063/1.1494801
doi: 10.1063/1.1494801
Roy, D. R.; Chattaraj, P. K. J. Phys. Chem. A 2008, 112, 1612. doi: 10.1021/jp710820c
doi: 10.1021/jp710820c
von Szentpály, L. J. Mol. Model 2017, 23, 217. doi: 10.1007/s00894-017-3383-z
doi: 10.1007/s00894-017-3383-z
Sabzyan, H.; Noorisafa, Z.; Keshavarz, E. Spectrochim. Acta A 2014, 117, 95. doi: 10.1016/j.saa.2013.07.111
doi: 10.1016/j.saa.2013.07.111
Zakrzewski, V. G.; Dolgounitcheva, O.; Ortiz, J. V. J. Chem. Phys. 1996, 105, 5872. doi: 10.1063/1.472428
doi: 10.1063/1.472428
Zhu, G. -Z. Wang, L. -S. J. Chem. Phys. 2015, 143, 221102. doi: 10.1063/1.4937761
doi: 10.1063/1.4937761
Nielsen, S. B.; Nielsen, M. B. J. Chem. Phys. 2003, 119, 10069. doi: 10.1063/1.1618216
doi: 10.1063/1.1618216
Assadollahzadeh, B.; Thierfelder, C.; Schwerdtfeger, P. Phys. Rev. B 2008, 78, 245423. doi: 10.1103/PhysRevB.78.245423
doi: 10.1103/PhysRevB.78.245423
Haynes, W. M.; Lide, R. D. Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, USA, 2011-2012.
Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Ion Energetics Data in NIST Chemistry Webbook; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, Maryland, USA, 2015.
Richard, R. M.; Marshall, M. S.; Dolgounitcheva, O.; Ortiz, J. V.; Brédas, J. -L.; Marom, N.; Sherrill, C. D. J. Chem. Theory Comput. 2016, 12, 595. doi: 10.1021/acs.jctc.5b00875
doi: 10.1021/acs.jctc.5b00875
Wang, X. B.; Wang, L. -S. J. Phys. Chem. A 2000, 104, 4429. doi: 10.1021/jp000362t
doi: 10.1021/jp000362t
Gutsev, G. L.; Boldyrev, A. I. Mol. Phys. 1984, 53, 23. doi: 10.1080/00268978400102111
doi: 10.1080/00268978400102111
von Szentpály, L. J. Phys. Chem. A 2011, 115, 8528. doi: 10.1021/jp203319y
doi: 10.1021/jp203319y
Walsh, N. Multiply-Negatively Charged Aluminum Clusters and Fullerenes; Ph. D. Thesis, Universität Greifswald, Greifswald, Germany, 2008. ub-ed.ub.unigreifswald.de/opus/volltexte/2008/.../ Diss_Walsh.pdf
Taylor, K. J.; Pettiette-Hall, C. L.; Chesnovsky, O.; Smalley, R. E. J. Chem. Phys. 1992, 96, 3319. doi: 10.1063/1.461927
doi: 10.1063/1.461927
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Chao Ma , Peng Guo , Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Panke Zhou , Hong Yu , Mun Yin Chee , Tao Zeng , Tianli Jin , Hongling Yu , Shuo Wu , Wen Siang Lew , Xiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Ze-Yuan Ma , Mei Xiao , Cheng-Kun Li , Adedamola Shoberu , Jian-Ping Zou . S-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064