Investigation on the Thermal Stability of Deep Eutectic Solvents
- Corresponding author: XUE Zhimin, zmxue@bjfu.edu.cn MU Tiancheng, tcmu@ruc.edu.cn
Citation: CHEN Wenjun, XUE Zhimin, WANG Jinfang, JIANG Jingyun, ZHAO Xinhui, MU Tiancheng. Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 904-911. doi: 10.3866/PKU.WHXB201712281
Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117, 6834. doi: 10.1021/acs.chemrev.6b00457
doi: 10.1021/acs.chemrev.6b00457
Xue, Z.; Zhang, Z.; Han, J.; Chen, Y.; Mu, T. Int. J. Greenhouse Gas Control 2011, 5, 628. doi: 10.1016/j.ijggc.2011.05.014
doi: 10.1016/j.ijggc.2011.05.014
Zhao, W.; Xue, Z.; Wang, J.; Jiang, J.; Zhao, X.; Mu, T. ACS Appl. Mater. Interfaces 2015, 7, 27608. doi: 10.1021/acsami.5b10734
doi: 10.1021/acsami.5b10734
Cao, Y.; Chen, Y.; Sun, X.; Zhang, Z.; Mu, T. Phys. Chem. Chem. Phys. 2012, 14, 12252. doi: 10.1039/C2CP41798G
doi: 10.1039/C2CP41798G
Wang, X. J.; Mu, T. Chin. Sci. Bull. 2015, 60, 2516.
doi: 10.1360/N972015-00266
Tang, B.; Row, K. H. Monatsh. Chem. 2013, 144, 1427. doi: 10.1007/s00706-013-1050-3
doi: 10.1007/s00706-013-1050-3
Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114, 11060. doi: 10.1021/cr300162p
doi: 10.1021/cr300162p
Maugeri, Z.; de Maria, P. D. RSC Adv. 2012, 2, 421. doi: 10.1039/C1RA00630D
doi: 10.1039/C1RA00630D
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Chem. Soc. Rev. 2012, 41, 7108. doi: 10.1039/C2CS35178A
doi: 10.1039/C2CS35178A
Jhong, H. R.; Wong, D. S. H.; Wan, C. C.; Wang, Y. Y.; Wei, T. C. Electrochem. Commun. 2009, 11, 209. doi: 10.1016/j.elecom.2008.11.001
doi: 10.1016/j.elecom.2008.11.001
Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2015, 5, 48675. doi: 10.1039/C5RA05746A
doi: 10.1039/C5RA05746A
Nkuku, C. A.; LeSuer, R. J. Phys. Chem. B 2007, 111, 13271. doi: 10.1021/jp075794j
doi: 10.1021/jp075794j
Jiang, J.; Yan, C.; Zhao, X.; Luo, H.; Xue, Z.; Mu, T. Green Chem. 2017, 19, 3023. doi: 10.1039/C7GC01012E
doi: 10.1039/C7GC01012E
Jiang, J.; Zhao, W.; Xue, Z.; Li, Q.; Yan, C.; Mu, T. ACS Sustainable Chem. Eng. 2016, 4, 5814. doi: 10.1021/acssuschemeng.6b01860
doi: 10.1021/acssuschemeng.6b01860
Li, G.; Yan, C.; Cao, B.; Jiang, J.; Zhao, W.; Wang, J.; Mu, T. Green Chem. 2016, 18, 2522. doi: 10.1039/C5GC02691A
doi: 10.1039/C5GC02691A
Chen, Y.; Cao, Y.; Shi, Y.; Xue, Z.; Mu, T. Ind. Eng. Chem. Res. 2012, 51, 7418. doi: 10.1021/ie300247v
doi: 10.1021/ie300247v
Cao, Y.; Mu, T. Ind. Eng. Chem. Res.2014, 53, 8651. doi: 10.1021/ie5009597
doi: 10.1021/ie5009597
Xue, Z.; Zhang, Y.; Zhou, X. -Q.; Cao, Y.; Mu, T. Thermochim. Acta 2014, 578, 59. doi: 10.1016/j.tca.2013.12.005
doi: 10.1016/j.tca.2013.12.005
Liu, S.; Chen, Y.; Shi, Y.; Sun, H.; Zhou, Z.; Mu, T. J. Mol. Liq. 2015, 206, 95. doi: 10.1016/j.molliq.2015.02.022
doi: 10.1016/j.molliq.2015.02.022
Sun, X.; Liu, S.; Khan, A.; Zhao, C.; Yan, C.; Mu, T. New J. Chem. 2014, 38, 3449. doi: 10.1039/C4NJ00384E
doi: 10.1039/C4NJ00384E
Li, Q.; Jiang, J.; Li, G.; Zhao, W.; Zhao, X.; Mu, T. Sci. China Chem. 2016, 59, 571. doi: 10.1007/s11426-016-5566-3
doi: 10.1007/s11426-016-5566-3
Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Chem. Rev. 2017, 117, 7113. doi: 10.1021/acs.chemrev.6b00594.
doi: 10.1021/acs.chemrev.6b00594
Morrison, H. G.; Sun, C. C.; Neervannan, S. Int. J. Pharm. 2009, 378, 136. doi: 10.1016/j.ijpharm.2009.05.039
doi: 10.1016/j.ijpharm.2009.05.039
Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. J. Am. Chem. Soc. 2004, 126, 9142. doi: 10.1021/ja048266j
doi: 10.1021/ja048266j
Lynam, J. G.; Kumar, N.; Wong, M. J. Bioresour. Technol. 2017, 238, 684. doi: 10.1016/j.biortech.2017.04.079
doi: 10.1016/j.biortech.2017.04.079
Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2003, 70. doi: 10.1039/B210714G
doi: 10.1039/B210714G
Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2001, 2010. doi: 10.1039/B106357J
doi: 10.1039/B106357J
Hayyan, A.; Mjalli, F. S.; AlNashef, I. M.; Al-Wahaibi, Y. M.; Al-Wahaibi, T.; Hashim, M. A. J. Mol. Liq. 2013, 178, 137. doi: 10.1016/j.molliq.2012.11.025
doi: 10.1016/j.molliq.2012.11.025
Ilgen, F.; Ott, D.; Kralisch, D.; Reil, C.; Palmberger, A.; Konig, B. Green Chem.2009, 11, 1948. doi: 10.1039/B917548M
doi: 10.1039/B917548M
Sun, S.; Niu, Y.; Xu, Q.; Sun, Z.; Wei, X. Ind. Eng. Chem. Res.2015, 54, 8019. doi: 10.1021/acs.iecr.5b01789
doi: 10.1021/acs.iecr.5b01789
Abbott, A. R.; Capper, G.; Gray, S. ChemPhysChem 2006, 7, 803. doi: 10.1002/cphc.200500489
doi: 10.1002/cphc.200500489
Amarasekara, A. S.; Owereh, O. S. J. Therm. Anal. Calorim.2011, 103, 1027. doi: 10.1007/s10973-010-1101-5
doi: 10.1007/s10973-010-1101-5
Jagadeeswara Rao, C.; Venkata Krishnan, R.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G. J. Therm. Anal. Calorim. 2009, 97, 937. doi: 10.1007/s10973-009-0193-2
doi: 10.1007/s10973-009-0193-2
Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermochim. Acta 2000, 357–358, 97. doi: 10.1016/S0040-6031[00]00373-7
doi: 10.1016/S0040-6031[00]00373-7
Yue, D.; Jing, Y.; Ma, J.; Yao, Y.; Jia, Y. J. Therm. Anal. Calorim. 2012, 110, 773. doi: 10.1007/s10973-011-1960-4
doi: 10.1007/s10973-011-1960-4
Heym, F.; Etzold, B. J. M.; Kern, C.; Jess, A. Phys. Chem. Chem. Phys. 2010, 12, 12089. doi: 10.1039/C0CP00097C
doi: 10.1039/C0CP00097C
Seeberger, A.; Andresen, A. -K.; Jess, A. Phys. Chem. Chem. Phys. 2009, 11, 9375. doi: 10.1039/B909624H
doi: 10.1039/B909624H
Wooster, T. J.; Johanson, K. M.; Fraser, K. J.; MacFarlane, D. R.; Scott, J. L. Green Chem.2006, 8, 691. doi: 10.1039/B606395K
doi: 10.1039/B606395K
Del Sesto, R. E.; McCleskey, T. M.; Macomber, C.; Ott, K. C.; Koppisch, A. T.; Baker, G. A.; Burrell, A. K. Thermochim. Acta 2009, 491, 118. doi: 10.1016/j.tca.2009.02.023
doi: 10.1016/j.tca.2009.02.023
Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. J. Chem. Thermodyn. 2005, 37, 559. doi: 10.1016/j.jct.2005.03.013
doi: 10.1016/j.jct.2005.03.013
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Guodong Xu , Chengcai Sheng , Xiaomeng Zhao , Tuojiang Zhang , Zongtang Liu , Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648