Citation: CHEN Wenjun, XUE Zhimin, WANG Jinfang, JIANG Jingyun, ZHAO Xinhui, MU Tiancheng. Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 904-911. doi: 10.3866/PKU.WHXB201712281 shu

Investigation on the Thermal Stability of Deep Eutectic Solvents

  • Corresponding author: XUE Zhimin, zmxue@bjfu.edu.cn MU Tiancheng, tcmu@ruc.edu.cn
  • Received Date: 12 December 2017
    Revised Date: 26 December 2017
    Accepted Date: 26 December 2017
    Available Online: 28 August 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China 21503016The project was supported by the National Natural Science Foundation of China 21773307The project was supported by the National Natural Science Foundation of China (21773307, 21503016)

  • In recent years, deep eutectic solvents (DESs) have attracted considerable attention. They have been applied in many fields such as dissolution and separation, electrochemistry, materials preparation, reaction, and catalysis. The DESs are generally formed by the hydrogen bonding interactions between hydrogen-bond donors (HBDs) and acceptors (HBAs). Knowledge of the thermal stability of DESs is very important for their application at high temperatures. However, there have been relatively few studies on the thermal stability of DESs. Herein, a systematic investigation on the thermal stability of 40 DESs was carried out using thermal gravimetric analysis (TGA), and the onset decomposition temperatures (Tonset) of these solvents were obtained. The most important conclusion drawn from this work is that the thermal behavior of DESs is quite different from that of ionic liquids. The anions or cations of ionic liquids decompose first, followed by the decomposition of the opposite ion at elevated temperatures. On the other hand, the DESs generally first decompose to HBDs and HBAs at high temperatures through the weakening of the hydrogen bond interactions. Subsequently, the HBDs with relatively low boiling points or poor stabilities undergo volatilization or decomposition; the HBAs also undergo volatilization or decomposition but at a higher temperature. For example, the most commonly used HBA choline chloride (ChCl) begins to decompose at around 250 ℃. The hydrogen bond plays an important role in the thermal stability of DESs. It hinders the "escape" of molecules and requires greater energy to break than pure HBAs and HBDs, which causes the Tonset of DESs to shift to higher temperatures. Note that the thermal stability of HBDs has a crucial effect on the Tonset of DESs. The HBDs would decompose or volatilize first during TGA because of their relatively poor thermal stability or lower boiling points. The more stable the HBDs are, the greater would be the Tonset values of the corresponding DESs. Further, the effects of anions on HBAs, molar ratio of HBAs to HBDs, and heating rate in fast scan TGA have been discussed. As the heating rate increased, the TGA curves of DESs shifted to higher temperatures gradually, and the temperature hysteretic effect became prominent when the rate reached 10 ℃?min?1. From an industrial application point of view, there is an overestimation of the onset decomposition temperatures of DESs by Tonset, so the long-term stability of DESs was investigated at the end of the study. This study could help understand the thermal behavior of DESs (progressive decomposition) and provide guidance for designing DESs with appropriate thermal stability for practical applications.
  • 加载中
    1. [1]

      Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117, 6834. doi: 10.1021/acs.chemrev.6b00457  doi: 10.1021/acs.chemrev.6b00457

    2. [2]

      Xue, Z.; Zhang, Z.; Han, J.; Chen, Y.; Mu, T. Int. J. Greenhouse Gas Control 2011, 5, 628. doi: 10.1016/j.ijggc.2011.05.014  doi: 10.1016/j.ijggc.2011.05.014

    3. [3]

      Zhao, W.; Xue, Z.; Wang, J.; Jiang, J.; Zhao, X.; Mu, T. ACS Appl. Mater. Interfaces 2015, 7, 27608. doi: 10.1021/acsami.5b10734  doi: 10.1021/acsami.5b10734

    4. [4]

      Cao, Y.; Chen, Y.; Sun, X.; Zhang, Z.; Mu, T. Phys. Chem. Chem. Phys. 2012, 14, 12252. doi: 10.1039/C2CP41798G  doi: 10.1039/C2CP41798G

    5. [5]

      Wang, X. J.; Mu, T. Chin. Sci. Bull. 2015, 60, 2516.  doi: 10.1360/N972015-00266

    6. [6]

      Tang, B.; Row, K. H. Monatsh. Chem. 2013, 144, 1427. doi: 10.1007/s00706-013-1050-3  doi: 10.1007/s00706-013-1050-3

    7. [7]

      Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114, 11060. doi: 10.1021/cr300162p  doi: 10.1021/cr300162p

    8. [8]

      Maugeri, Z.; de Maria, P. D. RSC Adv. 2012, 2, 421. doi: 10.1039/C1RA00630D  doi: 10.1039/C1RA00630D

    9. [9]

      Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Chem. Soc. Rev. 2012, 41, 7108. doi: 10.1039/C2CS35178A  doi: 10.1039/C2CS35178A

    10. [10]

      Jhong, H. R.; Wong, D. S. H.; Wan, C. C.; Wang, Y. Y.; Wei, T. C. Electrochem. Commun. 2009, 11, 209. doi: 10.1016/j.elecom.2008.11.001  doi: 10.1016/j.elecom.2008.11.001

    11. [11]

      Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2015, 5, 48675. doi: 10.1039/C5RA05746A  doi: 10.1039/C5RA05746A

    12. [12]

      Nkuku, C. A.; LeSuer, R. J. Phys. Chem. B 2007, 111, 13271. doi: 10.1021/jp075794j  doi: 10.1021/jp075794j

    13. [13]

      Jiang, J.; Yan, C.; Zhao, X.; Luo, H.; Xue, Z.; Mu, T. Green Chem. 2017, 19, 3023. doi: 10.1039/C7GC01012E  doi: 10.1039/C7GC01012E

    14. [14]

      Jiang, J.; Zhao, W.; Xue, Z.; Li, Q.; Yan, C.; Mu, T. ACS Sustainable Chem. Eng. 2016, 4, 5814. doi: 10.1021/acssuschemeng.6b01860  doi: 10.1021/acssuschemeng.6b01860

    15. [15]

      Li, G.; Yan, C.; Cao, B.; Jiang, J.; Zhao, W.; Wang, J.; Mu, T. Green Chem. 2016, 18, 2522. doi: 10.1039/C5GC02691A  doi: 10.1039/C5GC02691A

    16. [16]

      Chen, Y.; Cao, Y.; Shi, Y.; Xue, Z.; Mu, T. Ind. Eng. Chem. Res. 2012, 51, 7418. doi: 10.1021/ie300247v  doi: 10.1021/ie300247v

    17. [17]

      Cao, Y.; Mu, T. Ind. Eng. Chem. Res.2014, 53, 8651. doi: 10.1021/ie5009597  doi: 10.1021/ie5009597

    18. [18]

      Xue, Z.; Zhang, Y.; Zhou, X. -Q.; Cao, Y.; Mu, T. Thermochim. Acta 2014, 578, 59. doi: 10.1016/j.tca.2013.12.005  doi: 10.1016/j.tca.2013.12.005

    19. [19]

      Liu, S.; Chen, Y.; Shi, Y.; Sun, H.; Zhou, Z.; Mu, T. J. Mol. Liq. 2015, 206, 95. doi: 10.1016/j.molliq.2015.02.022  doi: 10.1016/j.molliq.2015.02.022

    20. [20]

      Sun, X.; Liu, S.; Khan, A.; Zhao, C.; Yan, C.; Mu, T. New J. Chem. 2014, 38, 3449. doi: 10.1039/C4NJ00384E  doi: 10.1039/C4NJ00384E

    21. [21]

      Li, Q.; Jiang, J.; Li, G.; Zhao, W.; Zhao, X.; Mu, T. Sci. China Chem. 2016, 59, 571. doi: 10.1007/s11426-016-5566-3  doi: 10.1007/s11426-016-5566-3

    22. [22]

      Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Chem. Rev. 2017, 117, 7113. doi: 10.1021/acs.chemrev.6b00594.  doi: 10.1021/acs.chemrev.6b00594

    23. [23]

      Morrison, H. G.; Sun, C. C.; Neervannan, S. Int. J. Pharm. 2009, 378, 136. doi: 10.1016/j.ijpharm.2009.05.039  doi: 10.1016/j.ijpharm.2009.05.039

    24. [24]

      Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. J. Am. Chem. Soc. 2004, 126, 9142. doi: 10.1021/ja048266j  doi: 10.1021/ja048266j

    25. [25]

      Lynam, J. G.; Kumar, N.; Wong, M. J. Bioresour. Technol. 2017, 238, 684. doi: 10.1016/j.biortech.2017.04.079  doi: 10.1016/j.biortech.2017.04.079

    26. [26]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2003, 70. doi: 10.1039/B210714G  doi: 10.1039/B210714G

    27. [27]

      Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2001, 2010. doi: 10.1039/B106357J  doi: 10.1039/B106357J

    28. [28]

      Hayyan, A.; Mjalli, F. S.; AlNashef, I. M.; Al-Wahaibi, Y. M.; Al-Wahaibi, T.; Hashim, M. A. J. Mol. Liq. 2013, 178, 137. doi: 10.1016/j.molliq.2012.11.025  doi: 10.1016/j.molliq.2012.11.025

    29. [29]

      Ilgen, F.; Ott, D.; Kralisch, D.; Reil, C.; Palmberger, A.; Konig, B. Green Chem.2009, 11, 1948. doi: 10.1039/B917548M  doi: 10.1039/B917548M

    30. [30]

      Sun, S.; Niu, Y.; Xu, Q.; Sun, Z.; Wei, X. Ind. Eng. Chem. Res.2015, 54, 8019. doi: 10.1021/acs.iecr.5b01789  doi: 10.1021/acs.iecr.5b01789

    31. [31]

      Abbott, A. R.; Capper, G.; Gray, S. ChemPhysChem 2006, 7, 803. doi: 10.1002/cphc.200500489  doi: 10.1002/cphc.200500489

    32. [32]

      Amarasekara, A. S.; Owereh, O. S. J. Therm. Anal. Calorim.2011, 103, 1027. doi: 10.1007/s10973-010-1101-5  doi: 10.1007/s10973-010-1101-5

    33. [33]

      Jagadeeswara Rao, C.; Venkata Krishnan, R.; Venkatesan, K. A.; Nagarajan, K.; Srinivasan, T. G. J. Therm. Anal. Calorim. 2009, 97, 937. doi: 10.1007/s10973-009-0193-2  doi: 10.1007/s10973-009-0193-2

    34. [34]

      Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermochim. Acta 2000, 357–358, 97. doi: 10.1016/S0040-6031[00]00373-7  doi: 10.1016/S0040-6031[00]00373-7

    35. [35]

      Yue, D.; Jing, Y.; Ma, J.; Yao, Y.; Jia, Y. J. Therm. Anal. Calorim. 2012, 110, 773. doi: 10.1007/s10973-011-1960-4  doi: 10.1007/s10973-011-1960-4

    36. [36]

      Heym, F.; Etzold, B. J. M.; Kern, C.; Jess, A. Phys. Chem. Chem. Phys. 2010, 12, 12089. doi: 10.1039/C0CP00097C  doi: 10.1039/C0CP00097C

    37. [37]

      Seeberger, A.; Andresen, A. -K.; Jess, A. Phys. Chem. Chem. Phys. 2009, 11, 9375. doi: 10.1039/B909624H  doi: 10.1039/B909624H

    38. [38]

      Wooster, T. J.; Johanson, K. M.; Fraser, K. J.; MacFarlane, D. R.; Scott, J. L. Green Chem.2006, 8, 691. doi: 10.1039/B606395K  doi: 10.1039/B606395K

    39. [39]

      Del Sesto, R. E.; McCleskey, T. M.; Macomber, C.; Ott, K. C.; Koppisch, A. T.; Baker, G. A.; Burrell, A. K. Thermochim. Acta 2009, 491, 118. doi: 10.1016/j.tca.2009.02.023  doi: 10.1016/j.tca.2009.02.023

    40. [40]

      Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. J. Chem. Thermodyn. 2005, 37, 559. doi: 10.1016/j.jct.2005.03.013  doi: 10.1016/j.jct.2005.03.013

  • 加载中
    1. [1]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    2. [2]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    3. [3]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    4. [4]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    5. [5]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    6. [6]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    7. [7]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    8. [8]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    9. [9]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    10. [10]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    11. [11]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    12. [12]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    13. [13]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    14. [14]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    15. [15]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    16. [16]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    17. [17]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    18. [18]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    19. [19]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    20. [20]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

Metrics
  • PDF Downloads(134)
  • Abstract views(1006)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return