Citation: ZHOU Zhihua, XIA Shumei, HE Liangnian. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 838-844. doi: 10.3866/PKU.WHXB201712271 shu

Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles


  • Author Bio:

    HE Liangnian born in August 1964. He got his PhD degree from Nankai University in 1996. Now, he is a professor of Chemistry at Nankai University. His current research interests cover green chemistry, CO2 chemistry, and biomass conversion
  • Corresponding author: HE Liangnian, heln@nankai.edu.cn
  • Received Date: 5 December 2017
    Revised Date: 22 December 2017
    Accepted Date: 25 December 2017
    Available Online: 27 August 2017

    Fund Project: National Natural Science Foundation of China 21672119National Natural Science Foundation of China 21421062The project was supported by the National Key Research and Development Program (2016YFA0602900), National Natural Science Foundation of China (21472103, 21421001, 21421062, 21672119), Natural Science Foundation of Tianjin Municipality (16JCZDJC39900)National Natural Science Foundation of China 21421001the National Key Research and Development Program 2016YFA0602900National Natural Science Foundation of China 21472103Natural Science Foundation of Tianjin Municipality 16JCZDJC39900

  • Carbon dioxide (CO2) is one of the main greenhouse gases that can be utilized as a useful C1 source owing to its abundance, non-toxicity, and renewability. In fact, the transformation of carbon dioxide into valuable organic molecules has attracted considerable attention over the past decades. One-pot multicomponent reactions generally proceed with more than two different raw materials reacting in one pot, thus simplifying the reaction in operation and workup. In this regard, a three-component reaction of CO2, propargylic alcohols, and nucleophiles such as amines, water, and alcohols, to prepare useful carbonyl compounds (e.g., carbamates, oxazolidinones, α-hydroxyl ketones, and organic carbonates) is particularly appealing because of the advantages of step and atom economy. From a mechanistic point of view, the three-component reaction of CO2, a propargylic alcohol, and a nucleophile is a type of cascade reaction, involving the carboxylative cyclization of CO2 and propargylic alcohol, and subsequent reaction of a nucleophile with the in situ formed α-alkylidene cyclic carbonate. On the other hand, reactions involving CO2 are generally thermodynamically unfavorable because of the thermodynamic stability and kinetic inertness of CO2. Cyclic carbonates are widely used in organic synthesis, and their preparation from vicinal diols and CO2 represents a green synthetic method because biomass is utilized as the source of vicinal diols. However, the low yields of cyclic carbonates are obtained in most cases because of thermodynamic limitations and deactivation of the catalyst by water, which is the co-product of cyclic carbonates. The most commonly used method to improve the yields of cyclic carbonates involves the addition of dehydrating agents. However, decreased selectivity is often observed because of the side reaction of vicinal diols with the hydrolysis products of the dehydrating agent. In addition, the reaction of 2-aminoethanols and CO2 to obtain the corresponding 2-oxazolidinones also encounters the analogous thermodynamic limitation. To solve this problem, an efficient three-component reaction of CO2, propargylic alcohols, and nucleophiles was developed to offer thermodynamically favorable ways for converting CO2 into cyclic carbonates and 2-oxazolidinones with vicinal diols or 2-aminoethanols as nucleophiles. In this strategy, water is not generated and the α-alkylidene cyclic carbonate formed from CO2 and propargylic alcohol as the actual carbonyl source reacts with vicinal diol or 2-aminoethanol to give the corresponding cyclic carbonates or 2-oxazolidinones in high yields and selectivity with the simultaneous formation of hydroxyketones. This review aims to summarize and discuss the recent advances in three-component reactions of CO2, propargylic alcohols, and nucleophiles to prepare various carbonyl compounds promoted by both metal catalysts and organocatalysts.
  • 加载中
    1. [1]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    2. [2]

      Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. doi: 10.1038/ncomms6933  doi: 10.1038/ncomms6933

    3. [3]

      Song, Q. -W.; Zhou, Z. -H.; He, L. -N. Green Chem. 2017, 19, 3707. doi: 10.1039/C7GC00199A  doi: 10.1039/C7GC00199A

    4. [4]

      Peng, J. -B.; Qi, X.; Wu, X. -F. Synlett 2016, 28, 175. doi: 10.1055/s-0036-1588351  doi: 10.1055/s-0036-1588351

    5. [5]

      Liang, Y. -F.; Jiao, N. Angew. Chem. Int. Ed. 2014, 53, 548. doi: 10.1002/anie.201308698  doi: 10.1002/anie.201308698

    6. [6]

      Dong, K.; Wu, X. -F. Angew. Chem. Int. Ed. 2017, 56, 5399. doi: 10.1002/anie.201702292  doi: 10.1002/anie.201702292

    7. [7]

      Wu, L.; Liu, Q.; Fleischer, I.; Jackstell, R.; Beller, M. Nat. Commun. 2014, 5, 3091. doi: 10.1038/ncomms4091  doi: 10.1038/ncomms4091

    8. [8]

      Gu, Y. Green Chem. 2012, 14, 2091. doi: 10.1039/C2GC35635J  doi: 10.1039/C2GC35635J

    9. [9]

      Fiorani, G.; Guo, W.; Kleij, A. W. Green Chem. 2015, 17, 1375. doi: 10.1039/C4GC01959H  doi: 10.1039/C4GC01959H

    10. [10]

      Schäffner, B.; Schäffner, F.; Verevkin, S. P.; Börner, A. Chem. Rev. 2010, 110, 4554. doi: 10.1021/cr900393d  doi: 10.1021/cr900393d

    11. [11]

      Vara Prasad, J. V. N. Curr. Opin. Microbiol. 2007, 10, 454. doi: 10.1016/j.mib.2007.08.001  doi: 10.1016/j.mib.2007.08.001

    12. [12]

      Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238. doi: 10.1021/ja00212a037  doi: 10.1021/ja00212a037

    13. [13]

      Guo, C. -X.; Ma, R.; He, L. -N. The Open Org. Chem. J. 2014, 8, 6. doi: 10.2174/1874095201408010006 and relevant references cited therein.  doi: 10.2174/1874095201408010006

    14. [14]

      Takada, Y.; Foo, S. W.; Yamazaki, Y.; Saito, S. RSC Adv. 2014, 4, 50851. doi: 10.1039/C4RA09609F and relevant references therein.  doi: 10.1039/C4RA09609

    15. [15]

      Carbon Dioxide as Chemical Feedstock; Aresta, M. Ed.; Wiley-VCH: Weinheim, Germany, 2010.
       

    16. [16]

      Sasaki, Y.; Dixneuf, P. H. J. Org. Chem. 1987, 52, 4389. doi: 10.1021/jo00228a046  doi: 10.1021/jo00228a046

    17. [17]

      Bruneau, C.; Dixncuf, P. H. Tetrahedron Lett. 1987, 28, 2005. doi: 10.1016/S0040-4039(00)96031-3  doi: 10.1016/S0040-4039(00)96031-3

    18. [18]

      Kim, H. -S.; Kim, J. -W.; Kwon, S.-C.; Shim, S. -C.; Kim, T. -J. J. Organomet. Chem. 1997, 545-546, 337. doi: 10.1016/S0022-328X(97)00366-5  doi: 10.1016/S0022-328X(97)00366-5

    19. [19]

      Qi, C. -R.; Jiang, H. -F. Green Chem. 2007, 9, 1284. doi: 10.1039/B707893E  doi: 10.1039/B707893E

    20. [20]

      Qi, C.; Huang, L.; Jiang, H. Synthesis 2010, 2010, 1433. doi: 10.1055/s-0029-1218675  doi: 10.1055/s-0029-1218675

    21. [21]

      Song, Q. -W.; Yu, B.; Li, X. -D.; Ma, R.; Diao, Z. -F.; Li, R. -G.; Li, W.; He, L. -N. Green Chem. 2014, 16, 1633. doi: 10.1039/C3GC42406E  doi: 10.1039/C3GC42406E

    22. [22]

      Song, Q. -W.; Chen, W. -Q.; Ma, R.; Yu, A.; Li, Q. -Y.; Chang, Y.; He, L. -N. ChemSusChem 2015, 8, 821. doi: 10.1002/cssc.201402921  doi: 10.1002/cssc.201402921

    23. [23]

      Gu, Y.; Zhang, Q.; Duan, Z.; Zhang, J.; Zhang, S.; Deng, Y. J. Org. Chem. 2005, 70, 7376. doi: 10.1021/jo050802i  doi: 10.1021/jo050802i

    24. [24]

      Li, X. -D.; Lang, X. -D.; Song, Q. -W.; Guo, Y. -K.; He, L. -N. Chin. J. Org. Chem. 2016, 36, 744. doi: 10.6023/cjoc201512037  doi: 10.6023/cjoc201512037

    25. [25]

      Zhang, Q.; Shi, F.; Gu, Y.; Yang, J.; Deng, Y. Tetrahedron Lett. 2005, 46, 5907. doi: 10.1016/j.tetlet.2005.06.116  doi: 10.1016/j.tetlet.2005.06.116

    26. [26]

      Licence, P.; Ke, J.; Sokolova, M.; Ross, S. K.; Poliakoff, M. Green Chem. 2003, 5, 99. doi: 10.1039/B212220K  doi: 10.1039/B212220K

    27. [27]

      Xu, J. X.; Zhao, J. W.; Jia, Z. B. Chin. Chem. Lett. 2011, 22, 1063. doi: 10.1016/j.cclet.2011.04.004  doi: 10.1016/j.cclet.2011.04.004

    28. [28]

      Jiang, H.; Zhao, J.; Wang, A. Synthesis 2008, 2008, 763. doi: 10.1055/s-2008-1032166  doi: 10.1055/s-2008-1032166

    29. [29]

      Jiang, H. -F.; Zhao, J. -W. Tetrahedron Lett. 2009, 50, 60. doi: 10.1016/j.tetlet.2008.10.078  doi: 10.1016/j.tetlet.2008.10.078

    30. [30]

      Gu, Y.; Shi, F.; Deng, Y. J. Org. Chem. 2004, 69, 391. doi: 10.1021/jo0351365  doi: 10.1021/jo0351365

    31. [31]

      Yamada, W.; Sugawara, Y.; Cheng, H. M.; Ikeno, T.; Yamada, T. Eur. J. Org. Chem. 2007, 2007, 2604. doi: 10.1002/ejoc.200700169  doi: 10.1002/ejoc.200700169

    32. [32]

      Xu, J.; Zhao, J.; Jia, Z.; Zhang, J. Synth. Commun. 2011, 41, 858. doi: 10.1080/00397911003707014  doi: 10.1080/00397911003707014

    33. [33]

      He, H.; Qi, C.; Hu, X.; Guan, Y.; Jiang, H. Green Chem. 2014, 16, 3729. doi: 10.1039/C4GC00522H  doi: 10.1039/C4GC00522H

    34. [34]

      Zhao, Y.; Yang, Z.; Yu, B.; Zhang, H.; Xu, H.; Hao, L.; Han, B.; Liu, Z. Chem. Sci. 2015, 6, 2297. doi: 10.1039/C5SC00040H  doi: 10.1039/C5SC00040H

    35. [35]

      Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563. doi: 10.1002/1521-3773(20021202)41:23<4563::AID-ANIE4563>3.0.CO;2-U  doi: 10.1002/1521-3773(20021202)41:23<4563::AID-ANIE4563>3.0.CO;2-U

    36. [36]

      Leyva, A.; Corma, A. J. Org. Chem. 2009, 74, 2067. doi: 10.1021/jo802558e  doi: 10.1021/jo802558e

    37. [37]

      Joumier, J. M.; Bruneau, C.; Dixneuf, P. H. Synlett 1992, 5, 453. doi: 10.1055/s-1992-21379  doi: 10.1055/s-1992-21379

    38. [38]

      Stainforth, N. E.; Cutting, G. A.; John, M. P.; Willis, M. C. Tetrahedron: Asymmetry 2009, 20, 741. doi: 10.1016/j.tetasy.2009.03.026  doi: 10.1016/j.tetasy.2009.03.026

    39. [39]

      Della Ca, N.; Gabriele, B.; Ruffolo, G.; Veltri, L.; Zanetta, T.; Costa, M. Adv. Synth. Catal. 2011, 353, 133. doi: 10.1002/adsc.201000607  doi: 10.1002/adsc.201000607

    40. [40]

      Zhou, Z. -H.; Song, Q. -W.; Xie, J. -N.; Ma, R.; He, L. -N. Chem. Asian J. 2016, 11, 2065. doi: 10.1002/asia.201600600  doi: 10.1002/asia.201600600

    41. [41]

      Hu, J.; Ma, J.; Lu, L.; Qian, Q.; Zhang, Z.; Xie, C.; Han, B. ChemSusChem 2017, 10, 1292. doi: 10.1002/cssc.201601773  doi: 10.1002/cssc.201601773

    42. [42]

      Comerford, J. W.; Ingram, I. D. V.; North, M.; Wu, X. Green Chem. 2015, 17, 1966. doi: 10.1039/C4GC01719F  doi: 10.1039/C4GC01719F

    43. [43]

      Zhou, C. -H.; Beltramini, J. N.; Fan, Y. -X.; Lu, G. Q. Chem. Soc. Rev. 2008, 37, 527. doi: 10.1039/B707343G  doi: 10.1039/B707343G

    44. [44]

      Tomishige, K.; Yasuda, H.; Yoshida, Y.; Nurunnabi, M.; Li, B.; Kunimori, K. Green Chem. 2004, 6, 206. doi: 10.1039/B401215A  doi: 10.1039/B401215A

    45. [45]

      Tomishige, K.; Yasuda, H.; Yoshida, Y.; Nurunnabi, M.; Li, B.; Kunimori, K. Catal. Lett. 2004, 95, 45. doi: 10.1023/B:CATL.0000023720.39110.4e  doi: 10.1023/B:CATL.0000023720.39110.4e

    46. [46]

      Honda, M.; Tamura, M.; Nakao, K.; Suzuki, K.; Nakagawa, Y.; Tomishige, K. ACS Catal. 2014, 4, 1893. doi: 10.1021/cs500301d  doi: 10.1021/cs500301d

    47. [47]

      Du, Y.; Kong, D. -L.; Wang, H. -Y.; Cai, F.; Tian, J. -S.; Wang, J. -Q.; He, L. -N. J. Mol. Cat. A: Chem. 2005, 241, 233. doi: 10.1016/j.molcata.2005.07.030  doi: 10.1016/j.molcata.2005.07.030

    48. [48]

      Du, Y.; He, L. -N.; Kong, D. -L. Catal. Commun. 2008, 9, 1754. doi: 10.1016/j.catcom.2008.02.004  doi: 10.1016/j.catcom.2008.02.004

    49. [49]

      Huang, S. -Y.; Liu, S. -G.; Li, J. -P.; Zhao, N.; Wei, W.; Sun, Y. -H. J. Fuel Chem. Technol. 2007, 35, 701. doi: 10.1016/S1872-5813(08)60005-5  doi: 10.1016/S1872-5813(08)60005-5

    50. [50]

      Huang, S.; Ma, J.; Li, J.; Zhao, N.; Wei, W.; Sun, Y. Catal. Commun. 2008, 9, 276. doi: 10.1016/j.catcom.2007.06.008  doi: 10.1016/j.catcom.2007.06.008

    51. [51]

      Da Silva, E.; Dayoub, W.; Mignani, G.; Raoul, Y.; Lemaire, M. Catal. Commun. 2012, 29, 58. doi: 10.1016/j.catcom.2012.08.030  doi: 10.1016/j.catcom.2012.08.030

    52. [52]

      Zhou, Z. -H.; Song, Q. -W.; He, L. -N. ACS Omega 2017, 2, 337. doi: 10.1021/acsomega.6b00407  doi: 10.1021/acsomega.6b00407

    53. [53]

      Sonnati, M. O.; Amigoni, S.; Taffin de Givenchy, E. P.; Darmanin, T.; Choulet, O.; Guittard, F. Green Chem. 2013, 15, 283. doi: 10.1039/C2GC36525A  doi: 10.1039/C2GC36525A

    54. [54]

      Song, Q. -W.; Zhou, Z. -H.; Wang, M. -Y.; Zhang, K.; Liu, P.; Xun, J. Y.; He, L. -N. ChemSusChem 2016, 9, 2054. doi: 10.1002/cssc.201600470  doi: 10.1002/cssc.201600470

    55. [55]

      Li, X. -D.; Song, Q. -W.; Lang, X. -D.; Chang, Y.; He, L. -N. ChemPhysChem 2017, 18, 3182. doi: 10.1002/cphc.201700297  doi: 10.1002/cphc.201700297

  • 加载中
    1. [1]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    2. [2]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    3. [3]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    4. [4]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    5. [5]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    6. [6]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    7. [7]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    8. [8]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    9. [9]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    10. [10]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    11. [11]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    12. [12]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    13. [13]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    14. [14]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    15. [15]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    16. [16]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    17. [17]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    18. [18]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

Metrics
  • PDF Downloads(6)
  • Abstract views(245)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return