Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters
- Corresponding author: CHENG Longjiu, clj@ustc.edu
Citation: SHEN Yanfang, CHENG Longjiu. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 830-836. doi: 10.3866/PKU.WHXB201712151
Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Gronbeck, H.; Hakkinen, H. Proc. Natl. Acad. Sci. USA 2008, 105, 9157. doi: 10.1073/pnas.0801001105
doi: 10.1073/pnas.0801001105
Reber, A. C.; Khanna, S. N. Acc. Chem. Res. 2017, 50, 255. doi: 10.1021/acs.accounts.6b00464
doi: 10.1021/acs.accounts.6b00464
Dhayal, R. S.; Liao, J. H.; Liu, Y. C.; Chiang, M. H.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Angew. Chem. Int. Ed. 2015, 54, 3702. doi: 10.1002/anie.201410332
doi: 10.1002/anie.201410332
Malola, S.; Lehtovaara, L.; Knoppe, S.; Hu, K. J.; Palmer, R. E.; Burgi, T.; Hakkinen, H. J. Am. Chem. Soc. 2012, 134, 19560. doi: 10.1021/ja309619n
doi: 10.1021/ja309619n
Chauhan, V.; Reber, A. C.; Khanna, S. N. J. Am. Chem. Soc. 2017, 139, 1871. doi: 10.1021/jacs.6b09416
doi: 10.1021/jacs.6b09416
Wan, X. K.; Lin, Z. W.; Wang, Q. M. J. Am. Chem. Soc. 2012, 134, 14750. doi: 10.1021/ja307256b
doi: 10.1021/ja307256b
Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintaue, T.; Jin, R. C. J. Am. Chem. Soc. 2010, 132, 8280. doi: 10.1021/ja103592z
doi: 10.1021/ja103592z
Yuan, S. F.; Li, P.; Tang, Q.; Wan, X. K.; Nan, Z. A.; Jiang, D. E.; Wang, Q. M. Nanoscale 2017, 9, 11405. doi: 10.1039/c7nr02687k
doi: 10.1039/c7nr02687k
Geitner, F. S.; Dums, J. V.; Fassler, T. F. J. Am. Chem. Soc. 2017, 139, 11933. doi: 10.1021/jacs.7b05834
doi: 10.1021/jacs.7b05834
Zhu, M. Z.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. C. J. Am. Chem. Soc. 2008, 130, 1138. doi: 10.1021/ja0782448
doi: 10.1021/ja0782448
Xu, W. W.; Zhu, B.; Zeng, X. C.; Gao, Y. Nat. Commun. 2016, 7, 13574. doi: 10.1038/ncomms13574
doi: 10.1038/ncomms13574
Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L. W.; Wu, Z. K. Acta Phys. -Chim. Sin. 2018, 34 (7), 792.
doi: 10.3866/PKU.WHXB201710091
Wu, X. W.; Yi, G. Acta Phys. -Chim. Sin. 2018, 34 (7), 770.
doi: 10.3866/PKU.WHXB201711061
Tominaga, C.; Hikosou, D.; Osaka, I.; Kawasak, H. Acta Phys. -Chim. Sin. 2018, 34 (7), 805. doi: 10.3866/PKU.WHXB201710271
doi: 10.3866/PKU.WHXB201710271
Roach, P. J.; Reber, A. C.; Woodward, W. H.; Khanna, S. N.; Castleman, A. W., Jr. Proc. Natl. Acad. Sci. USA 2007, 104, 14565. doi: 10.1073/pnas.0706613104
doi: 10.1073/pnas.0706613104
Knight, W. D.; Clemenger, K.; de Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Phys. Rev. Lett. 1984, 52, 2141. doi: 10.1103/PhysRevLett.52.2141
doi: 10.1103/PhysRevLett.52.2141
Clemenger, K. Phys. Rev. B 1985, 32, 1359. doi: 10.1103/PhysRevB.32.1359
doi: 10.1103/PhysRevB.32.1359
de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611. doi: 10.1103/RevModPhys.65.611
doi: 10.1103/RevModPhys.65.611
Khanna, S. N.; Jena, P. Phys. Rev. B 1995, 51, 13705. doi: 10.1103/PhysRevB.51.13705
doi: 10.1103/PhysRevB.51.13705
Bergeron, D. E.; Castleman, A. W.; Morisato, T.; Khanna, S. N. Science 2004, 304, 84. doi: 10.1126/science.1093902
doi: 10.1126/science.1093902
Bergeron, D. E.; Roach, P. J.; Castleman, A. W.; Jones, N.; Khanna, S. N. Science 2005, 307, 231. doi: 10.1126/science.1105820
doi: 10.1126/science.1105820
Castleman, A. W.; Khanna, S. N. J. Phys. Chem. C 2009, 113, 2664. doi: 10.1021/jp806850h
doi: 10.1021/jp806850h
Luo, Z.; Castleman, A. W. Acc. Chem. Res. 2014, 47, 2931. doi: 10.1021/ar5001583
doi: 10.1021/ar5001583
Cheng, L. J.; Yuan, Y.; Zheng, X. Z.; Yang, J. L. Angew. Chem. Int. Ed. 2013, 52, 9035. doi: 10.1002/anie.201302926
doi: 10.1002/anie.201302926
Gutrath, B. S.; Oppel, I. M.; Presly, O.; Beljakov, I.; Meded, V.; Wenzel, W.; Simon, U. Angew. Chem. Int. Ed. 2013, 52, 3529. doi: 10.1002/anie.201208681
doi: 10.1002/anie.201208681
Koyasu, K.; Tsukuda, T. Phys. Chem. Chem. Phys. 2014, 16, 21717. doi: 10.1039/c4cp03199g
doi: 10.1039/c4cp03199g
Yan, L. J.; Cheng, L. J.; Yang, J. L. Chin. J. Chem. Phys. 2015, 28, 476. doi: 10.1063/1674-0068/28/cjcp1505105
doi: 10.1063/1674-0068/28/cjcp1505105
Cheng, L.; Ren, C.; Zhang, X.; Yang, J. Nanoscale 2013, 5, 1475. doi: 10.1039/c2nr32888g
doi: 10.1039/c2nr32888g
Liu, L. R.; Li, P.; Yuan, L. F.; Cheng, L. J.; Yang, J. L. Nanoscale 2016, 8, 12787. doi: 10.1039/c6nr01998f
doi: 10.1039/c6nr01998f
Cheng, L. J.; Zhang, X. Z.; Jin, B. K.; Yang, J. L. Nanoscale 2014, 6, 12440. doi: 10.1039/c4nr03550j
doi: 10.1039/c4nr03550j
Wang, H. Y.; Cheng, L. J. Nanoscale 2017, 9, 13209. doi: 10.1039/c7nr03114a
doi: 10.1039/c7nr03114a
Trebbe, R.; Goddard, R.; Rufinska, A.; Seevogel, K.; Porschke, K. R. Organometallics 1999, 18, 2466. doi: 10.1021/om990239s
doi: 10.1021/om990239s
Dedieu, A. Chem. Rev. 2000, 100, 543. doi: 10.1021/cr980407a
doi: 10.1021/cr980407a
Moc, J.; Musaev, D. G.; Morokuma, K. J. Phys. Chem. A 2000, 104, 11606. doi: 10.1021/jp0022104
doi: 10.1021/jp0022104
Puddephatt, R. J. J. Org. Chem. 2017, 849, 268. doi: 10.1016/j.jorganchem.2017.01.030
doi: 10.1016/j.jorganchem.2017.01.030
Tang, S.; Eisenstein, O.; Nakao, Y.; Sakaki, S. Organometallics 2017, 36, 2761. doi: 10.1021/acs.organomet.7b00256
doi: 10.1021/acs.organomet.7b00256
Kalita, B.; Deka, R. C. J. Am. Chem. Soc. 2009, 131, 13252. doi: 10.1021/ja904119b
doi: 10.1021/ja904119b
Nava, P.; Sierka, M.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2003, 5, 3372. doi: 10.1039/b303347c
doi: 10.1039/b303347c
Benjamin, S. L.; Krämer, T.; Levason, W.; Light, M. E.; Macgregor, S. A.; Reid, G. J. Am. Chem. Soc. 2016, 138, 6964. doi: 10.1021/jacs.6b04060
doi: 10.1021/jacs.6b04060
Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207. doi: 10.1039/B804083D
doi: 10.1039/B804083D
Frisch, M. ; Trucks, G. ; Schlegel, H. B. ; Scuseria, G. ; Robb, M. ; Cheeseman, J. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. ; et al. Gaussian 09, Revision B. 01; Gaussian Inc. : Wallingford, CT, USA, 2010
Varetto, U. Molekel 5. 4. 0. 8, Swiss National Supercomputing Centre, Manno, Switzerland, 2009.
Boldyrev, A. I.; Wang, L. S. Phys. Chem. Chem. Phys. 2016, 18, 11589. doi: 10.1039/c5cp07465g
doi: 10.1039/c5cp07465g
Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Acc. Chem. Res. 2014, 47, 1349. doi: 10.1021/ar400310g
doi: 10.1021/ar400310g
Popov, I. A.; Jian, T.; Lopez, G. V.; Boldyrev, A. I.; Wang, L. S. Nat. Commun. 2015, 6, 8654. doi: 10.1038/ncomms9654
doi: 10.1038/ncomms9654
Li, W. L.; Jian, T.; Chen, X.; Chen, T. T.; Lopez, G. V.; Li, J.; Wang, L. S. Angew.Chem. 2016, 128, 7484. doi: 10.1002/ange.201601548
doi: 10.1002/ange.201601548
Xu, C.; Cheng, L. J.; Yang, J. L. J. Chem. Phys. 2014, 141, 124301. doi: 10.1063/1.4895727
doi: 10.1063/1.4895727
Li, L. F.; Xu, C.; Jin, B. K.; Cheng, L. J. Dalton Trans. 2014, 43, 11739. doi: 10.1039/c4dt01106f
doi: 10.1039/c4dt01106f
Yuan, Y.; Cheng, L. J. J. Chem. Phys. 2013, 138, 024301. doi: 10.1063/1.4773281
doi: 10.1063/1.4773281
Li, L. F.; Xu, C.; Jin, B. K.; Cheng, L. J. J. Chem. Phys. 2013, 139, 174310. doi: 10.1063/1.4827517
doi: 10.1063/1.4827517
Li, L. F.; Xu, C.; Cheng, L. J. Comput. Theor. Chem. 2013, 1021, 144. doi: 10.1016/j.comptc.2013.07.001
doi: 10.1016/j.comptc.2013.07.001
Yuan, Y.; Cheng, L. J. J. Chem. Phys. 2012, 137, 044308. doi: 10.1063/1.4738957
doi: 10.1063/1.4738957
Cheng, L. J. J. Chem. Phys. 2012, 136, 104301. doi: 10.1063/1.3692183
doi: 10.1063/1.3692183
Pyykkö, P. J. Phys. Chem. A 2015, 119, 2326. doi: 10.1021/jp5065819
doi: 10.1021/jp5065819
Cui, G. L.; Cao, X. Y.; Fang, W. H.; Dolg, M.; Thiel, W. Angew. Chem. Int. Ed. 2013, 52, 10281. doi: 10.1002/anie.201305487
doi: 10.1002/anie.201305487
Pyykkö, P. Angew. Chem. Int. Ed. 2004, 43, 4412. doi: 10.1002/anie.200300624
doi: 10.1002/anie.200300624
Schmidbaur, H.; Schier, A. Angew. Chem. Int. Ed. 2015, 54, 746. doi: 10.1002/anie.201405936
doi: 10.1002/anie.201405936
Pyykkö, P.; Mendizabal, F. Inorg. Chem. 1998, 37, 3018. doi: 10.1021/ic980121o
doi: 10.1021/ic980121o
Harwell, D. E.; Mortimer, M. D.; Knobler, C. B.; Anet, F. A. L.; Hawthorne, M. F. J. Am. Chem. Soc. 1996, 118, 2679. doi: 10.1021/ja953976y
doi: 10.1021/ja953976y
Jiaxiang Guo , Zeyi Li , Tianyu Zhang , Xinyu Tian , Yue Wang , Chuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
Jiayao Li , Xinru Peng , Shiwei Yin , Changwei Wang , Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Shicheng Dong , Jun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302