Citation: LIU Tian, LI Jun, LIU Weijia, ZHU Yudan, LU Xiaohua. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1097-1105. doi: 10.3866/PKU.WHXB201712131 shu

Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond

  • Corresponding author: LI Jun, lijun@njtech.edu.cn ZHU Yudan, ydzhu@njtech.edu.cn
  • Received Date: 15 November 2017
    Revised Date: 8 December 2017
    Accepted Date: 8 December 2018
    Available Online: 13 October 2017

    Fund Project: Research Fund for the Doctoral Program of Higher Education of China 20123221120015National Natural Science Foundation of China 91334202National Key Basic Research Development Program of China (973) 2013CB733501Natural Science Foundation of Jiangsu Province BK2012421National Key Basic Research Development Program of China (973) 2013CB733505The project was supported by National Key Basic Research Development Program of China (973) (2013CB733505, 2013CB733501), National Natural Science Foundation of China (91334202), Natural Science Foundation of Jiangsu Province (BK2012421), Research Fund for the Doctoral Program of Higher Education of China (20123221120015), Project for Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

  • The development of efficient catalysts for the hydrogenation of CO2 to formic acid (FA) or formate has attracted significant interest as it can address the increasingly severe energy crisis and environmental problems. One of the most efficient methods to transform CO2 to FA is catalytic homogeneous hydrogenation using noble metal catalysts based on Ir, Ru, and Rh. In our previous work, we demonstrated that the activity of CO2 hydrogenation via direct addition of hydride to CO2 on Ir(Ⅲ) and Ru(Ⅱ) complexes was determined by the nature of the metal-hydride bond. These complexes could react with the highly stable CO2 molecule because they contain the same distinct metal-hydride bond formed from the mixing of the sd2 hybrid orbital of metal with the 1s orbital of H, and evidently, this property can be influenced by the trans ligand. Since boryl ligands exhibit a strong trans influence, we proposed that introducing such ligands may enhance the activity of the Ru―H bond by weakening it as a result of the trans influence. In this work, we designed two potential catalysts, namely, Ru-PNP-HBcat and Ru-PNP-HBpin, which were based on the Ru(PNP)(CO)H2 (PNP = 2, 6-bis(dialkylphosphinomethyl)pyridine) complex, and computationally investigated their reactivity toward CO2 hydrogenation. Bcat and Bpin (cat = catecholate, pin = pinacolate) are among the most popular boryl ligands in transition metal boryl complexes and have been widely applied in catalytic reactions. Our optimization results revealed that the complexes modified by boryl ligands possessed a longer Ru―H bond. Similarly, natural bond orbital (NBO) charge analysis indicated that the nucleophilic character of the hydride in Ru-PNP-HBcat and Ru-PNP-HBpin was higher as compared to that in Ru-PNP-H2. NBO analysis of the nature of Ru―H bond indicated that these complexes also followed the law of the bonding of Ru―H bond proved in the previous works (Bull. Chem. Soc. Jpn. 2011, 84 (10), 1039; Bull. Chem. Soc. Jpn. 2016, 89 (8), 905), and the d orbital contribution of the Ru atom in Ru-PNP-HBcat and Ru-PNP-HBpin was smaller than that in Ru-PNP-H2. Consequently, the Ru-PNP-HBcat and Ru-PNP-HBpin complexes were more active than Ru-PNP-H2 for the direct hydride addition to CO2 because of the lower activation energy barrier, i.e., from 29.3 kJ∙mol-1 down to 24.7 and 23.4 kJ∙mol-1, respectively. In order to further verify our proposed catalyst-design strategy for CO2 hydrogenation, the free energy barriers of the complete pathway for the hydrogenation of CO2 to formate catalyzed by complexes Ru-PNP-H2, Ru-PNP-HBcat, and Ru-PNP-HBpin were calculated to be 76.2, 67.8, and 54.4 kJ∙mol-1, respectively, indicating the highest activity of Ru-PNP-HBpin. Thus, the reactivity of Ru catalysts for CO2 hydrogenation could be tailored by the strong trans influence of the boryl ligands and the nature of the Ru―H bond.
  • 加载中
    1. [1]

      Wang, W. H.; Hull, J. F.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Energy Environ. Sci. 2012, 5 (7), 7923. doi: 10.1039/c2ee21888g  doi: 10.1039/c2ee21888g

    2. [2]

      Machan, C. W.; Sampson, M. D.; Kubiak, C. P. J. Am. Chem. Soc. 2015, 137 (26), 8564. doi: 10.1021/jacs.5b03913  doi: 10.1021/jacs.5b03913

    3. [3]

      Clark, M. L.; Grice, K. A.; Moore, C. E.; Rheingold, A. L.; Kubiak, C. P. Chem. Sci. 2014, 5 (5), 1894. doi: 10.1039/c3sc53470g  doi: 10.1039/c3sc53470g

    4. [4]

      Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134 (51), 20701. doi: 10.1021/ja307924a  doi: 10.1021/ja307924a

    5. [5]

      Federsel, C.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2010, 49 (36), 6254. doi: 10.1002/anie.201000533  doi: 10.1002/anie.201000533

    6. [6]

      Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31 (1), L387. doi: 10.1016/s0020-1693(00)94933-8.  doi: 10.1016/s0020-1693(00)94933-8

    7. [7]

      Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem. Int. Ed. 2011, 50 (37), 8510. doi: 10.1002/anie.201102010  doi: 10.1002/anie.201102010

    8. [8]

      Wang, W. H.; Ertem, M. Z.; Xu, S.; Onishi, N.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. ACS Catal. 2015, 5 (9), 5496. doi: 10.1021/acscatal.5b01090  doi: 10.1021/acscatal.5b01090

    9. [9]

      Behr, A.; Nowakowski, K.Advances in Inorganic Chemistry; Aresta, M., Eldik, R. V., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2014; Vol. 66, pp. 223-258.

    10. [10]

      Liu, C.; Xie, J. H.; Tian, G. L.; Li, W.; Zhou, Q. L. Chem. Sci. 2015, 6 (5), 2928. doi: 10.1039/c5sc00248f  doi: 10.1039/c5sc00248f

    11. [11]

      Lilio, A. M.; Reineke, M. H.; Moore, C. E.; Rheingold, A. L.; Takase, M. K.; Kubiak, C. P. J. Am. Chem. Soc. 2015, 137 (25), 8251. doi: 10.1021/jacs.5604291  doi: 10.1021/jacs.5604291

    12. [12]

      Gunanathan, C.; Milstein, D. Accounts Chem. Res. 2011, 44 (8), 588. doi: 10.1021/ar2000265  doi: 10.1021/ar2000265

    13. [13]

      Ohnishi, Y. Y.; Nakao, Y.; Sato, H.; Sakaki, S. Organometallics 2006, 25 (14), 3352. doi: 10.1021/om060307s  doi: 10.1021/om060307s

    14. [14]

      Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131 (40), 14168. doi: 10.1021/ja903574e  doi: 10.1021/ja903574e

    15. [15]

      Filonenko, G. A.; Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. ChemCatChem 2014, 6 (6), 1526. doi: 10.1002/cctc.201402119  doi: 10.1002/cctc.201402119

    16. [16]

      Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C. C.; Jessop, P. G. J. Am. Chem. Soc. 2002, 124 (27), 7963. doi: 10.1021/ja0167856  doi: 10.1021/ja0167856

    17. [17]

      Filonenko, G. A.; Hensen, E. J. M.; Pidko, E. A. Catal. Sci. Technol. 2014, 4 (10), 3474. doi: 10.1039/c4cy00568f  doi: 10.1039/c4cy00568f

    18. [18]

      Li, J.; Yoshizawa, K. Bull. Chem. Soc. Jpn. 2011, 84 (10), 1039. doi: 10.1246/bcsj.20110128  doi: 10.1246/bcsj.20110128

    19. [19]

      Li, J.; Liu, S.; Lu, X. Bull. Chem. Soc. Jpn. 2016, 89 (8), 905. doi: 10.1246/bcsj.20160084  doi: 10.1246/bcsj.20160084

    20. [20]

      Zhu, J.; Lin, Z. Y.; Marder, T. B. Inorg. Chem. 2005, 44 (25), 9384. doi: 10.1021/ic0513641  doi: 10.1021/ic0513641

    21. [21]

      Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133 (24), 9274. doi: 10.1021/ja2035514  doi: 10.1021/ja2035514

    22. [22]

      Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2011, 50 (9), 2120. doi: 10.1002/anie.201007406  doi: 10.1002/anie.201007406

    23. [23]

      Braunschweig, H.; Kollann, C.; Rais, D. Angew. Chem. Int. Ed. 2006, 45 (32), 5254. doi: 10.1002/anie.200600506  doi: 10.1002/anie.200600506

    24. [24]

      Aldridge, S.; Coombs, D. L. Coord. Chem. Rev. 2004, 248 (7-8), 535. doi: 10.1016/j.ccr.2003.12.003  doi: 10.1016/j.ccr.2003.12.003

    25. [25]

      Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136 (39), 13672. doi: 10.1021/ja504667f  doi: 10.1021/ja504667f

    26. [26]

      Segawa, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131 (26), 9201. doi: 10.1021/ja9037092  doi: 10.1021/ja9037092

    27. [27]

      Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2013, 135 (41), 15310. doi: 10.1021/ja408397v  doi: 10.1021/ja408397v

    28. [28]

      Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136 (39), 13672. doi: 10.1021/ja504667f  doi: 10.1021/ja504667f

    29. [29]

      Kallane, S. I.; Braun, T.; Teltewskoi, M.; Braun, B.; Herrmann, R.; Laubenstein, R. Chem. Commun. 2015, 51 (78), 14613. doi: 10.1039/c5cc05606c  doi: 10.1039/c5cc05606c

    30. [30]

      Braunschweig, H.; Brenner, P.; Dewhurst, R. D.; Guethlein, F.; Jimenez-Halla, J. O. C.; Radacki, K.; Wolf, J.; Zollner, L. Chem. -Eur. J. 2012, 18 (28), 8605. doi: 10.1002/chem.201201739  doi: 10.1002/chem.201201739

    31. [31]

      Lim, X. Nature 2015, 526, 628. doi: 10.1038/526628a  doi: 10.1038/526628a

    32. [32]

      Feller, M.; Gellrich, U.; Anaby, A.; Diskin-Posner, Y.; Milstein, D. J. Am. Chem. Soc. 2016, 138 (20), 6445. doi: 10.1021/jacs.6b00202  doi: 10.1021/jacs.6b00202

    33. [33]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009.

    34. [34]

      Becke, A. D. Phys. Rev. A 1988, 38 (6), 3098. doi: 10.1103/PhysRevA.38.3098  doi: 10.1103/PhysRevA.38.3098

    35. [35]

      Xia, G. J.; Liu, J. W.; Liu, Z. F. Dalton Trans. 2016, 45 (43), 17329. doi: 10.1039/c6dt02897g  doi: 10.1039/c6dt02897g

    36. [36]

      Miyada, T.; Yamashita, M. Organometallics 2013, 32 (19), 5281. doi: 10.1021/om400915x  doi: 10.1021/om400915x

    37. [37]

      Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114 (8), 3408. doi: 10.1063/1.1337864  doi: 10.1063/1.1337864

    38. [38]

      Dunning, T. H. J. Chem. Phys. 1989, 90 (2), 1007. doi: 10.1063/1.456153  doi: 10.1063/1.456153

    39. [39]

      Li, J.; Shiota, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2009, 131 (38), 13584. doi: 10.1021/ja905073s  doi: 10.1021/ja905073s

    40. [40]

      Mosquera, M. E. G.; Gomez-Sal, P.; Diaz, I.; Aguirre, L. M.; Ienco, A.; Manca, G.; Mealli, C. Inorg. Chem. 2016, 55 (1), 283. doi: 10.1021/acs.inorgchem.5b02307  doi: 10.1021/acs.inorgchem.5b02307

    41. [41]

      Grayson, M. N.; Krische, M. J.; Houk, K. N. J. Am. Chem. Soc. 2015, 137 (27), 8838. doi: 10.1021/jacs.5b04844  doi: 10.1021/jacs.5b04844

    42. [42]

      Mazzone, G.; Alberto, M. E.; Sicilia, E. J. Mol. Model. 2014, 20 (5), 2249. doi: 10.1007/s00894-014-2250-4  doi: 10.1007/s00894-014-2250-4

    43. [43]

      Filonenko, G. A.; Conley, M. P.; Copéret, C.; Lutz, M.; Hensen, E. J. M.; Pidko, E. A. ACS Catal. 2013, 3 (11), 2522. doi: 10.1021/cs4006869  doi: 10.1021/cs4006869

    44. [44]

      Khaskin, E.; Iron, M. A.; Shimon, L. J. W.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2010, 132 (25), 8542. doi: 10.1021/ja103130u  doi: 10.1021/ja103130u

    45. [45]

      Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127 (31), 10840. doi: 10.1021/ja052862b  doi: 10.1021/ja052862b

    46. [46]

      Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.9; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2009.

    47. [47]

      Braunschweig, H.; Brenner, P.; Muller, A.; Radacki, K.; Rais, D.; Uttinger, K. Chem. -Eur. J. 2007, 13 (25) 7171. doi: 10.1002/chem.200700539  doi: 10.1002/chem.200700539

    48. [48]

      Rawat, K. S.; Mahata, A.; Choudhuri, I.; Pathak, B. J. Phys. Chem. C 2016, 120 (30), 16478. doi: 10.1021/acs.jpcc.6b05065  doi: 10.1021/acs.jpcc.6b05065

    49. [49]

      Osadchuk, I.; Tamm, T.; Ahlquist, M. S. G. Organometallics 2015, 34 (20), 4932. doi: 10.1021/acs.organomet.5b00448  doi: 10.1021/acs.organomet.5b00448

    50. [50]

      Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Organometallics 2011, 30 (24), 6742. doi: 10.1021/om2010172  doi: 10.1021/om2010172

    51. [51]

      Zhang, P.; Ni, S. F.; Dang, L. Chem. -Asian J. 2016, 11 (18), 2528. doi: 10.1002/asia.201600611  doi: 10.1002/asia.201600611

  • 加载中
    1. [1]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    2. [2]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    3. [3]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    8. [8]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    9. [9]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    10. [10]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    13. [13]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    14. [14]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    15. [15]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    16. [16]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    17. [17]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    18. [18]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    19. [19]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    20. [20]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

Metrics
  • PDF Downloads(5)
  • Abstract views(359)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return