Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond
- Corresponding author: LI Jun, lijun@njtech.edu.cn ZHU Yudan, ydzhu@njtech.edu.cn
Citation: LIU Tian, LI Jun, LIU Weijia, ZHU Yudan, LU Xiaohua. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Physico-Chimica Sinica, ;2018, 34(10): 1097-1105. doi: 10.3866/PKU.WHXB201712131
Wang, W. H.; Hull, J. F.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Energy Environ. Sci. 2012, 5 (7), 7923. doi: 10.1039/c2ee21888g
doi: 10.1039/c2ee21888g
Machan, C. W.; Sampson, M. D.; Kubiak, C. P. J. Am. Chem. Soc. 2015, 137 (26), 8564. doi: 10.1021/jacs.5b03913
doi: 10.1021/jacs.5b03913
Clark, M. L.; Grice, K. A.; Moore, C. E.; Rheingold, A. L.; Kubiak, C. P. Chem. Sci. 2014, 5 (5), 1894. doi: 10.1039/c3sc53470g
doi: 10.1039/c3sc53470g
Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134 (51), 20701. doi: 10.1021/ja307924a
doi: 10.1021/ja307924a
Federsel, C.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2010, 49 (36), 6254. doi: 10.1002/anie.201000533
doi: 10.1002/anie.201000533
Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31 (1), L387. doi: 10.1016/s0020-1693(00)94933-8.
doi: 10.1016/s0020-1693(00)94933-8
Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem. Int. Ed. 2011, 50 (37), 8510. doi: 10.1002/anie.201102010
doi: 10.1002/anie.201102010
Wang, W. H.; Ertem, M. Z.; Xu, S.; Onishi, N.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. ACS Catal. 2015, 5 (9), 5496. doi: 10.1021/acscatal.5b01090
doi: 10.1021/acscatal.5b01090
Behr, A.; Nowakowski, K.Advances in Inorganic Chemistry; Aresta, M., Eldik, R. V., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2014; Vol. 66, pp. 223-258.
Liu, C.; Xie, J. H.; Tian, G. L.; Li, W.; Zhou, Q. L. Chem. Sci. 2015, 6 (5), 2928. doi: 10.1039/c5sc00248f
doi: 10.1039/c5sc00248f
Lilio, A. M.; Reineke, M. H.; Moore, C. E.; Rheingold, A. L.; Takase, M. K.; Kubiak, C. P. J. Am. Chem. Soc. 2015, 137 (25), 8251. doi: 10.1021/jacs.5604291
doi: 10.1021/jacs.5604291
Gunanathan, C.; Milstein, D. Accounts Chem. Res. 2011, 44 (8), 588. doi: 10.1021/ar2000265
doi: 10.1021/ar2000265
Ohnishi, Y. Y.; Nakao, Y.; Sato, H.; Sakaki, S. Organometallics 2006, 25 (14), 3352. doi: 10.1021/om060307s
doi: 10.1021/om060307s
Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131 (40), 14168. doi: 10.1021/ja903574e
doi: 10.1021/ja903574e
Filonenko, G. A.; Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. ChemCatChem 2014, 6 (6), 1526. doi: 10.1002/cctc.201402119
doi: 10.1002/cctc.201402119
Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C. C.; Jessop, P. G. J. Am. Chem. Soc. 2002, 124 (27), 7963. doi: 10.1021/ja0167856
doi: 10.1021/ja0167856
Filonenko, G. A.; Hensen, E. J. M.; Pidko, E. A. Catal. Sci. Technol. 2014, 4 (10), 3474. doi: 10.1039/c4cy00568f
doi: 10.1039/c4cy00568f
Li, J.; Yoshizawa, K. Bull. Chem. Soc. Jpn. 2011, 84 (10), 1039. doi: 10.1246/bcsj.20110128
doi: 10.1246/bcsj.20110128
Li, J.; Liu, S.; Lu, X. Bull. Chem. Soc. Jpn. 2016, 89 (8), 905. doi: 10.1246/bcsj.20160084
doi: 10.1246/bcsj.20160084
Zhu, J.; Lin, Z. Y.; Marder, T. B. Inorg. Chem. 2005, 44 (25), 9384. doi: 10.1021/ic0513641
doi: 10.1021/ic0513641
Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133 (24), 9274. doi: 10.1021/ja2035514
doi: 10.1021/ja2035514
Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2011, 50 (9), 2120. doi: 10.1002/anie.201007406
doi: 10.1002/anie.201007406
Braunschweig, H.; Kollann, C.; Rais, D. Angew. Chem. Int. Ed. 2006, 45 (32), 5254. doi: 10.1002/anie.200600506
doi: 10.1002/anie.200600506
Aldridge, S.; Coombs, D. L. Coord. Chem. Rev. 2004, 248 (7-8), 535. doi: 10.1016/j.ccr.2003.12.003
doi: 10.1016/j.ccr.2003.12.003
Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136 (39), 13672. doi: 10.1021/ja504667f
doi: 10.1021/ja504667f
Segawa, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131 (26), 9201. doi: 10.1021/ja9037092
doi: 10.1021/ja9037092
Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2013, 135 (41), 15310. doi: 10.1021/ja408397v
doi: 10.1021/ja408397v
Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136 (39), 13672. doi: 10.1021/ja504667f
doi: 10.1021/ja504667f
Kallane, S. I.; Braun, T.; Teltewskoi, M.; Braun, B.; Herrmann, R.; Laubenstein, R. Chem. Commun. 2015, 51 (78), 14613. doi: 10.1039/c5cc05606c
doi: 10.1039/c5cc05606c
Braunschweig, H.; Brenner, P.; Dewhurst, R. D.; Guethlein, F.; Jimenez-Halla, J. O. C.; Radacki, K.; Wolf, J.; Zollner, L. Chem. -Eur. J. 2012, 18 (28), 8605. doi: 10.1002/chem.201201739
doi: 10.1002/chem.201201739
Lim, X. Nature 2015, 526, 628. doi: 10.1038/526628a
doi: 10.1038/526628a
Feller, M.; Gellrich, U.; Anaby, A.; Diskin-Posner, Y.; Milstein, D. J. Am. Chem. Soc. 2016, 138 (20), 6445. doi: 10.1021/jacs.6b00202
doi: 10.1021/jacs.6b00202
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2009.
Becke, A. D. Phys. Rev. A 1988, 38 (6), 3098. doi: 10.1103/PhysRevA.38.3098
doi: 10.1103/PhysRevA.38.3098
Xia, G. J.; Liu, J. W.; Liu, Z. F. Dalton Trans. 2016, 45 (43), 17329. doi: 10.1039/c6dt02897g
doi: 10.1039/c6dt02897g
Miyada, T.; Yamashita, M. Organometallics 2013, 32 (19), 5281. doi: 10.1021/om400915x
doi: 10.1021/om400915x
Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114 (8), 3408. doi: 10.1063/1.1337864
doi: 10.1063/1.1337864
Dunning, T. H. J. Chem. Phys. 1989, 90 (2), 1007. doi: 10.1063/1.456153
doi: 10.1063/1.456153
Li, J.; Shiota, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2009, 131 (38), 13584. doi: 10.1021/ja905073s
doi: 10.1021/ja905073s
Mosquera, M. E. G.; Gomez-Sal, P.; Diaz, I.; Aguirre, L. M.; Ienco, A.; Manca, G.; Mealli, C. Inorg. Chem. 2016, 55 (1), 283. doi: 10.1021/acs.inorgchem.5b02307
doi: 10.1021/acs.inorgchem.5b02307
Grayson, M. N.; Krische, M. J.; Houk, K. N. J. Am. Chem. Soc. 2015, 137 (27), 8838. doi: 10.1021/jacs.5b04844
doi: 10.1021/jacs.5b04844
Mazzone, G.; Alberto, M. E.; Sicilia, E. J. Mol. Model. 2014, 20 (5), 2249. doi: 10.1007/s00894-014-2250-4
doi: 10.1007/s00894-014-2250-4
Filonenko, G. A.; Conley, M. P.; Copéret, C.; Lutz, M.; Hensen, E. J. M.; Pidko, E. A. ACS Catal. 2013, 3 (11), 2522. doi: 10.1021/cs4006869
doi: 10.1021/cs4006869
Khaskin, E.; Iron, M. A.; Shimon, L. J. W.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2010, 132 (25), 8542. doi: 10.1021/ja103130u
doi: 10.1021/ja103130u
Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127 (31), 10840. doi: 10.1021/ja052862b
doi: 10.1021/ja052862b
Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.9; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2009.
Braunschweig, H.; Brenner, P.; Muller, A.; Radacki, K.; Rais, D.; Uttinger, K. Chem. -Eur. J. 2007, 13 (25) 7171. doi: 10.1002/chem.200700539
doi: 10.1002/chem.200700539
Rawat, K. S.; Mahata, A.; Choudhuri, I.; Pathak, B. J. Phys. Chem. C 2016, 120 (30), 16478. doi: 10.1021/acs.jpcc.6b05065
doi: 10.1021/acs.jpcc.6b05065
Osadchuk, I.; Tamm, T.; Ahlquist, M. S. G. Organometallics 2015, 34 (20), 4932. doi: 10.1021/acs.organomet.5b00448
doi: 10.1021/acs.organomet.5b00448
Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Organometallics 2011, 30 (24), 6742. doi: 10.1021/om2010172
doi: 10.1021/om2010172
Zhang, P.; Ni, S. F.; Dang, L. Chem. -Asian J. 2016, 11 (18), 2528. doi: 10.1002/asia.201600611
doi: 10.1002/asia.201600611
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
Ningxiang Wu , Huaping Zhao , Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112