Citation: ZHENG Youkun, JIANG Hui, WANG Xuemei. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 740-754. doi: 10.3866/PKU.WHXB201712111 shu

Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters


  • Author Bio:

    WANG Xuemei is currently a full professor of Biomedical Engineering, Southeast University. She obtained her PhD in Chemistry from Nanjing University, China in 1994 and became a lecturer in Nanjing University in 1995. She was an Alexander von Humboldt Fellow in the Chemistry Department, University of Saarland, Germany, before she joined the State Key Laboratory of Bioelectronics, Southeast University in 1998. Her research focuses on bioelectronics and biosensors, biomaterials for multimode bioimaging and nanomedicine
  • Corresponding author: WANG Xuemei, xuewang@seu.edu.cn
  • Received Date: 9 November 2017
    Revised Date: 7 December 2017
    Accepted Date: 7 December 2017
    Available Online: 11 July 2017

    Fund Project: the National Natural Science Foundation of China 81325011The project was supported by the National High Technology Research and Development Program of China 2015AA020502the National Key Research and Development Program of China 2017YFA0205300the National Natural Science Foundation of China 21175020The project was supported by the National High Technology Research and Development Program of China (2015AA020502), the National Key Research and Development Program of China (2017YFA0205300) and the National Natural Science Foundation of China (81325011, 21175020)

  • Alloy metal nanoclusters (NCs), including bimetallic and multimetallic clusters, have recently emerged as a novel class of multifunctional nanomaterials. They are widely used in catalysis, optical sensing, and biological imaging due to their excellent physicochemical properties such as unique electronic structure, ultrasmall size, strong photoluminescence, and rich surface chemistry. Although much progress has been made in the development of NCs, a major challenge in the synthesis of the relevant multifunctional nanomaterial is to achieve the synthetic methodological breakthrough, especially for controlling the synthesis and structure of NCs with atomic precision. It is evident that by realizing controlled synthesis and structural regulation at the atomic scale, we can better understand and tune the fundamental properties of NCs for efficient use in various application areas; this could also shed light on the development of new functionalized nanomaterials. Most of the recent research on the controlled synthesis and structural characterization of metal clusters with atomic precision has focused on monometallic NCs, and significant progress has been realized with respect to alloy metal NCs. A number of synthetic strategies have been developed for synthesizing high-quality alloy NCs with well-defined compositions, sizes, and architectures. In this review, we have highlighted some recent advances in strategies for the precise synthesis of ligands-protected alloy metal NCs, especially thiolate-stabilized gold-based alloy NCs. We classified the synthetic strategies for alloy NCs into several strategies, which include one-pot synthesis, metal exchange, ligand exchange, chemical etching, intercluster reactions, surface motif exchange reaction, and in situ two-phase ligand exchange strategy. One-pot synthesis is facile and widely used as a synthetic strategy for monodisperse alloy NCs with well-defined compositions, sizes, architectures, and surface chemistries. However, the alloy NCs obtained through the one-pot strategy often exhibits a relatively somber fluorescence. Therefore, other synthesis strategies have been exploited that can fabricate alloy NCs exhibiting strong photoluminescence. Among them, the surface motif exchange reaction is expected to be extended to the fabrication of new binary alloy NCs with precise alloy sites to broaden the physicochemical properties of the NCs; intercluster reactions has been explored as an emerging and efficient strategy to fabricate atomically precise alloy NCs. It is noted that the two or multiple metal species incorporated in a single alloy NC usually show unexpected synergistic properties like adjustable electronic structures and strong photoluminescence. Such unique properties have rapidly motivated the research community to use alloy NCs in many applications such as catalysis, biosensors, and biomedicine.
  • 加载中
    1. [1]

      Zhang, L.; Wang, E. Nano Today 2014, 9, 132. doi: 10.1016/j.nantod.2014.02.010  doi: 10.1016/j.nantod.2014.02.010

    2. [2]

      Tao, Y.; Li, M.; Ren, J.; Qu, X.Chem. Soc. Rev. 2015, 44, 8636. doi: 10.1039/C5CS00607D  doi: 10.1039/C5CS00607D

    3. [3]

      Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Chem. Rev. 2015, 115, 10410. doi: 10.1021/acs.chemrev.5b00193  doi: 10.1021/acs.chemrev.5b00193

    4. [4]

      Zheng, Y.; Lai, L.; Liu, W.; Jiang, H.; Wang, X. Adv. Colloid Interface Sci. 2017, 242, 1. doi: 10.1016/j.cis.2017.02.005  doi: 10.1016/j.cis.2017.02.005

    5. [5]

      Liu, P.; Qin, R.; Fu, G.; Zheng, N. J. Am. Chem. Soc. 2017, 139, 2122. doi: 10.1021/jacs.6b10978  doi: 10.1021/jacs.6b10978

    6. [6]

      Tian, Z.; Cheng, L. Nanoscale 2016, 8, 826. doi: 10.1039/C5NR05020K  doi: 10.1039/C5NR05020K

    7. [7]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. doi: 10.1021/ja801173r  doi: 10.1021/ja801173r

    8. [8]

      Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2009, 131, 2490. doi: 10.1021/ja809157f  doi: 10.1021/ja809157f

    9. [9]

      Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. J. Am. Chem. Soc. 2012, 134, 16662. doi: 10.1021/ja306199p  doi: 10.1021/ja306199p

    10. [10]

      Xie, J.; Zheng, Y.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888. doi: 10.1021/ja806804u  doi: 10.1021/ja806804u

    11. [11]

      Jiang, H.; Su, X.; Zhang, Y.; Zhou, J.; Fang, D.; Wang, X. Anal. Chem. 2016, 88, 4766. doi: 10.1021/acs.analchem.6b00112  doi: 10.1021/acs.analchem.6b00112

    12. [12]

      Jiang, H.; Liu, L.; Wang, X. Nanoscale 2017, 9, 9792. doi: 10.1039/C7NR03382F  doi: 10.1039/C7NR03382F

    13. [13]

      Zhu, Y.; Qian, H.; Jin, R. J. Mater. Chem. 2011, 21, 6793. doi: 10.1039/C1JM10082C  doi: 10.1039/C1JM10082C

    14. [14]

      Wang, C.; Li, J.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X. Angew. Chem. Int. Ed. 2011, 50, 11644. doi: 10.1002/anie.201105573  doi: 10.1002/anie.201105573

    15. [15]

      Zhang, Y.; Jiang, H.; Wang, X. Anal. Chim. Acta 2015, 870, 1. doi: 10.1016/j.aca.2015.01.016  doi: 10.1016/j.aca.2015.01.016

    16. [16]

      Su, X.; Jiang, H.; Wang, X. Anal. Chem. 2015, 87, 10230. doi: 10.1021/acs.analchem.5b02559  doi: 10.1021/acs.analchem.5b02559

    17. [17]

      Chen, Y. S.; Kamat, P. V. J. Am. Chem. Soc. 2014, 136, 6075. doi: 10.1021/ja5017365  doi: 10.1021/ja5017365

    18. [18]

      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    19. [19]

      Wang, X.; Cai, X.; Hu, J.; Shao, N.; Wang, F.; Zhang, Q.; Xiao, J.; Cheng, Y. J. Am. Chem. Soc. 2013, 135, 9805. doi: 10.1021/ja402903h  doi: 10.1021/ja402903h

    20. [20]

      Chen, D.; Luo, Z.; Li, N.; Lee, J. Y.; Xie, J.; Lu, J. Adv. Funct. Mater. 2013, 23, 4324. doi: 10.1002/adfm.201300411  doi: 10.1002/adfm.201300411

    21. [21]

      Gottlieb, E.; Qian, H.; Jin, R. Chem. Eur. J. 2013, 19, 4238. doi: 10.1002/chem.201203158  doi: 10.1002/chem.201203158

    22. [22]

      Li, Q.; Wang, S.; Kirschbaum, K.; Lambright, K. J.; Das, A.; Jin, R. Chem. Commun. 2016, 52, 5194. doi: 10.1039/C6CC01243D  doi: 10.1039/C6CC01243D

    23. [23]

      Kang, X.; Zhou, M.; Wang, S.; Jin, S.; Sun, G.; Zhu, M.; Jin, R. Chem. Sci. 2017, 8, 2581. doi: 10.1039/C6SC05104A  doi: 10.1039/C6SC05104A

    24. [24]

      Li, G., Jin, R. Catal. Today 2016, 278, 187. doi: 10.1016/j.cattod.2015.11.019  doi: 10.1016/j.cattod.2015.11.019

    25. [25]

      Yan, J.; Su, H.; Yang, H.; Hu, C.; Malola, S.; Lin, S.; Teo, B. K.; H kkinen, H.; Zheng, N. J. Am. Chem. Soc. 2016, 138, 12751. doi: 10.1021/jacs.6b08100  doi: 10.1021/jacs.6b08100

    26. [26]

      Zhang, Y.; Jiang, H.; Ge, W.; Li, Q.; Wang, X. Langmuir 2014, 30, 10910. doi: 10.1021/la5028702  doi: 10.1021/la5028702

    27. [27]

      Huang, J.; Zhu, Y.; Lin, M.; Wang, Q.; Zhao, L.; Yang, Y.; Yao, K.; Han, Y. J. Am. Chem. Soc. 2013, 135, 8552. doi: 10.1021/ja4004602  doi: 10.1021/ja4004602

    28. [28]

      Wang, S.; Meng, X.; Das, A.; Li, T.; Song, Y.; Cao, T.; Zhu, X.; Zhu, M.; Jin, R. Angew. Chem. Int. Ed. 2014, 53, 2376. doi: 10.1002/anie.201307480  doi: 10.1002/anie.201307480

    29. [29]

      Wang, D.; Li, Y. Adv. Mater.2011, 23, 1044. doi: 10.1002/adma.201003695  doi: 10.1002/adma.201003695

    30. [30]

      Qian, H.; Jiang, D. E.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. J. Am. Chem. Soc. 2012, 134, 16159. doi: 10.1021/ja307657a  doi: 10.1021/ja307657a

    31. [31]

      Jin, R.; Nobusada, K. Nano Res. 2014, 7, 285. doi: 10.1007/s12274-014-0403-5  doi: 10.1007/s12274-014-0403-5

    32. [32]

      Jin, R.; Zhao, S.; Xing, Y.; Jin, R. CrystEngComm 2016, 18, 3996. doi: 10.1039/C5CE02494C  doi: 10.1039/C5CE02494C

    33. [33]

      Zhang, H.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Nat. Mater. 2012, 11, 49. doi: 10.1038/NMAT3143  doi: 10.1038/NMAT3143

    34. [34]

      Yang, H.; Wang, Y.; Huang, H.; Gell, L.; Lehtovaara, L.; Malola, S.; H kkinen, H.; Zheng, N. Nat. Commun.2013, 4, 2422. doi: 10.1038/ncomms3422  doi: 10.1038/ncomms3422

    35. [35]

      Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208. doi: 10.1021/acs.chemrev.6b00769  doi: 10.1021/acs.chemrev.6b00769

    36. [36]

      Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Coord. Chem. Rev. 2016, 320, 238. doi: 10.1016/j.ccr.2016.02.013  doi: 10.1016/j.ccr.2016.02.013

    37. [37]

      Sun, G.; Kang, X.; Jin, S.; Li, X.; Hu, D.; Wang, S.; Zhu, M. Acta Phys.-Chim. Sin. 2018, 34(7), 799.  doi: 10.3866/PKU.WHXB201710124

    38. [38]

      Kumara, C.; Dass, A. Nanoscale 2012, 4, 4084. doi: 10.1039/c2nr11781a  doi: 10.1039/c2nr11781a

    39. [39]

      Qian, H.; Barry, E.; Zhu, Y.; Jin, R. Acta Phys.-Chim. Sin. 2011, 27, 513. doi: 10.3866/PKU.WHXB20110304  doi: 10.3866/PKU.WHXB20110304

    40. [40]

      Wan, X. K.; Cheng, X. L.; Tang, Q.; Han, Y. Z.; Hu, G.; Jiang, D. E.; Wang, Q. M. J. Am. Chem. Soc. 2017, 139, 9451. doi: 10.1021/jacs.7b04622  doi: 10.1021/jacs.7b04622

    41. [41]

      Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F.; et al. J. Am. Chem. Soc. 2017, 139, 1053. doi: 10.1021/jacs.6b11875  doi: 10.1021/jacs.6b11875

    42. [42]

      Yamazoe, S.; Kurashige, W.; Nobusada, K.; Negishi, Y.; Tsukuda, T. J. Phys. Chem. C 2014, 118, 25284. doi: 10.1021/jp5085372  doi: 10.1021/jp5085372

    43. [43]

      Yang, S.; Wang, S.; Jin, S.; Chen, S.; Sheng, H.; Zhu, M. Nanoscale 2015, 7, 10005. doi: 10.1039/c5nr01965f  doi: 10.1039/c5nr01965f

    44. [44]

      Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. Nat. Commun. 2017, 8, 14723. doi: 10.1038/ncomms14723  doi: 10.1038/ncomms14723

    45. [45]

      Chai, J.; Lv, Y.; Yang, S.; Song, Y.; Zan, X.; Li, Q.; Yu, H.; Wu, M.; Zhu, M. J. Phys. Chem. C, 2017, 121, 21665. doi: 10.1021/acs.jpcc.7b05074  doi: 10.1021/acs.jpcc.7b05074

    46. [46]

      Kumara, C.; Gagnon, K. J.; Dass, A. J. Phys. Chem. Lett. 2015, 6, 1223. doi: 10.1021/acs.jpclett.5b00270  doi: 10.1021/acs.jpclett.5b00270

    47. [47]

      Kumara, C.; Dass, A. Nanoscale 2011, 3, 3064. doi: 10.1039/C1NR10429B  doi: 10.1039/C1NR10429B

    48. [48]

      Koivisto, J.; Malola, S.; Kumara, C.; Dass, A.; Häkkinen, H.; Pettersson, M. J. Phys. Chem. Lett.2012, 3, 3076. doi: 10.1021/jz301261x  doi: 10.1021/jz301261x

    49. [49]

      Sharma, S.; Kurashige, W.; Nobusada, K.; Negishi, Y. Nanoscale 2015, 7, 10606. doi: 10.1039/c5nr01491c  doi: 10.1039/c5nr01491c

    50. [50]

      Yan, J.; Su, H.; Yang, H.; Malola, S.; Lin, S.; Häkkinen, H.; Zheng, N. J. Am. Chem. Soc. 2015, 137, 11880. doi: 10.1021/jacs.5b07186  doi: 10.1021/jacs.5b07186

    51. [51]

      Wang, Y.; Su, H.; Xu, C.; Li, G.; Gell, L.; Lin, S.; Tang, Z.; Häkkinen, H.; Zheng, N. J. Am. Chem. Soc. 2015, 137, 4324. doi: 10.1021/jacs.5b01232  doi: 10.1021/jacs.5b01232

    52. [52]

      Bhat, S.; Baksi, A.; Mudedla, S. K.; Natarajan, G.; Subramanian, V.; Pradeep, T. J. Phys. Chem. Lett. 2017, 8, 2787. doi: 10.1021/acs.jpclett.7b01052  doi: 10.1021/acs.jpclett.7b01052

    53. [53]

      Yan, N.; Liao, L.; Yuan, J.; Lin, Y. J.; Weng, L. H.; Yang, J.; Wu, Z. Chem. Mater. 2016, 28, 8240. doi: 10.1021/acs.chemmater.6b03132  doi: 10.1021/acs.chemmater.6b03132

    54. [54]

      Zeng, J. L.; Guan, Z. J.; Du, Y.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. J. Am. Chem. Soc. 2016, 138, 7848. doi: 10.1021/jacs.6b04471  doi: 10.1021/jacs.6b04471

    55. [55]

      Biltek, S. R.; Reber, A. C.; Khanna, S. N.; Sen, A. J. Phys. Chem. A 2017, 121, 5324. doi: 10.1021/acs.jpca.7b04669  doi: 10.1021/acs.jpca.7b04669

    56. [56]

      Yao, C.; Lin, Y. J.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.; Yang, J.; Wu, Z. J. Am. Chem. Soc. 2015, 137, 15350. doi: 10.1021/jacs.5b09627  doi: 10.1021/jacs.5b09627

    57. [57]

      Tofanelli, M. A.; Ni, T. W.; Phillips, B. D.; Ackerson, C. J. Inorg. Chem. 2016, 55, 999. doi: 10.1021/acs.inorgchem.5b02106  doi: 10.1021/acs.inorgchem.5b02106

    58. [58]

      Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Puelles, R. C. J. Phys. Chem. B 2005, 109, 20652. doi: 10.1021/jp055007n  doi: 10.1021/jp055007n

    59. [59]

      Negishi, Y.; Iwai, T.; Ide, M. Chem. Commun. 2010, 46, 4713. doi: 10.1039/c0cc01021a  doi: 10.1039/c0cc01021a

    60. [60]

      Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. J. Phys. Chem. C 2013, 117, 7914. doi: 10.1021/jp4013224  doi: 10.1021/jp4013224

    61. [61]

      Dou, X.; Yuan, X.; Yao, Q.; Luo, Z.; Zheng, K.; Xie, J. Chem. Commun. 2014, 50, 7459. doi: 10.1039/C4CC02261K  doi: 10.1039/C4CC02261K

    62. [62]

      Yuan, X.; Zhang, B.; Luo, Z.; Yao, Q.; Leong, D. T.; Yan, N.; Xie, J. Angew. Chem. Int. Ed. 2014, 126, 4711. doi: 10.1002/ange.201311177  doi: 10.1002/ange.201311177

    63. [63]

      Chen, T.; Yang, S.; Chai, J.; Song, Y.; Fan, J.; Rao, B.; Sheng, H.; Yu, H.; Zhu, M. Sci. Adv. 2017, 3, e1700956. doi: 10.1126/sciadv.1700956  doi: 10.1126/sciadv.1700956

    64. [64]

      Wang, Z.; Senanayake, R.; Aikens, C. M.; Chen, W. M.; Tung, C. H.; Sun, D. Nanoscale 2016, 8, 18905. doi: 10.1039/c6nr06615a  doi: 10.1039/c6nr06615a

    65. [65]

      Wang, Y.; Wan, X. K.; Ren, L.; Su, H.; Li, G.; Malola, S.; Lin, S.; Tang, Z.; Häkkinen, H.; Teo, B. K.; et al. J. Am. Chem. Soc. 2016, 138, 3278. doi: 10.1021/jacs.5b12730  doi: 10.1021/jacs.5b12730

    66. [66]

      Wang, S.; Jin, S.; Yang, S.; Chen, S.; Song, Y.; Zhang, J.; Zhu, M. Sci. Adv. 2015, 1, e1500441. doi: 10.1126/sciadv.1500441  doi: 10.1126/sciadv.1500441

    67. [67]

      Ataee-Esfahani, H.; Wang, L.; Nemoto, Y.; Yamauchi, Y. Chem. Mater. 2010, 22, 6310. doi: 10.1021/cm102074w  doi: 10.1021/cm102074w

    68. [68]

      Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2011, 34, 181. doi: 10.1021/ar000110  doi: 10.1021/ar000110

    69. [69]

      Formo, E.; Lee, E.; Campbell, D.; Xia, Y. Nano Lett. 2008, 8, 668. doi: 10.1021/nl073163v  doi: 10.1021/nl073163v

    70. [70]

      Christensen, S. L.; MacDonald, M. A.; Chatt, A.; Zhang, P.; Qian, H.; Jin, R. J. Phys. Chem. C 2012, 116, 26932. doi: 10.1021/jp310183x  doi: 10.1021/jp310183x

    71. [71]

      Kwak, K.; Tang, Q.; Kim, M.; Jiang, D. E.; Lee, D. J. Am. Chem. Soc. 2015, 137, 10833. doi: 10.1021/jacs.5b06946  doi: 10.1021/jacs.5b06946

    72. [72]

      Zhao, Y.; Ye, C.; Liu, W.; Chen, R.; Jiang, X. Angew. Chem. Int. Ed. 2014, 53, 8127. doi: 10.1002/anie.201401035  doi: 10.1002/anie.201401035

    73. [73]

      Zhou, M.; Qian, H.; Sfeir, M. Y.; Nobusada, K.; Jin, R. Nanoscale 2016, 8, 7163. doi: 10.1039/c6nr01008c  doi: 10.1039/c6nr01008c

    74. [74]

      Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Phys. Chem. Chem. Phys. 2010, 12, 6219. doi: 10.1039/b927175a  doi: 10.1039/b927175a

    75. [75]

      Negishi, Y.; Kurashige, W.; Kobayashi, Y.; Yamazoe, S.; Kojima, N.; Seto, M.; Tsukuda, T. J. Phys. Chem. Lett. 2013, 4, 3579. doi: 10.1021/jz402030n  doi: 10.1021/jz402030n

    76. [76]

      Negishi, Y.; Igarashi, K.; Munakata, K.; Ohgake, W.; Nobusada, K. Chem. Commun. 2012, 48, 660. doi: 10.1039/c1cc15765e  doi: 10.1039/c1cc15765e

    77. [77]

      Kang, X.; Xiang, J.; Lv, Y.; Du, W.; Yu, H.; Wang, S.; Zhu, M. Chem. Mater. 2017, 29, 6856. doi: 10.1021/acs.chemmater.7b02015  doi: 10.1021/acs.chemmater.7b02015

    78. [78]

      Kurashige, W.; Negishi, Y. J. Clust. Sci. 2012, 23, 365. doi: 10.1007/s10876-011-0437-8  doi: 10.1007/s10876-011-0437-8

    79. [79]

      Baksi, A.; Pradeep, T. Nanoscale 2013, 5, 12245. doi: 10.1039/C3NR04257J  doi: 10.1039/C3NR04257J

    80. [80]

      Kurashige, W.; Munakata, K.; Nobusada, K.; Negishi, Y. Chem. Commun. 2013, 49, 5447. doi: 10.1039/C3CC41210E  doi: 10.1039/C3CC41210E

    81. [81]

      Dharmaratne, A. C.; Dass, A. Chem. Commun. 2014, 50, 1722. doi: 10.1039/c3cc47060a  doi: 10.1039/c3cc47060a

    82. [82]

      Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. J. Phys. Chem. Lett. 2012, 3, 2209. doi: 10.1021/jz300892w  doi: 10.1021/jz300892w

    83. [83]

      Yang, H.; Wang, Y.; Lei, J.; Shi, L.; Wu, X.; Mäkinen, V.; Lin, S.; Tang, Z.; He, J.; Häkkinen, H.; et al. J. Am. Chem. Soc. 2013, 135, 9568. doi: 10.1021/ja402249s  doi: 10.1021/ja402249s

    84. [84]

      Yang, H.; Wang, Y.; Yan, J.; Chen, X.; Zhang, X.; Häkkinen, H.; Zheng, N. J. Am. Chem. Soc. 2014, 136, 7197. doi: 10.1021/ja501811j  doi: 10.1021/ja501811j

    85. [85]

      Shen, H.; Mizuta, T. Chem.-Asian J., 2017, doi: 10.1002/asia.201701337  doi: 10.1002/asia.201701337

    86. [86]

      Biltek, S. R.; Mandal, S.; Sen, A.; Reber, A. C.; Pedicini, A. F.; Khanna, S. N. J. Am. Chem. Soc. 2012, 135, 26. doi: 10.1021/ja308884s  doi: 10.1021/ja308884s

    87. [87]

      Liu, X.; Astruc, D. Adv. Mater. 2017, 29, 1605305. doi: 10.1002/adma.201605305  doi: 10.1002/adma.201605305

    88. [88]

      Oh, M. H.; Yu, T.; Yu, S. H.; Lim, B.; Ko, K. T.; Willinger, M. G.; Seo, D. H.; Kim, B. H.; Cho, M. G.; Park, J. H.; et al. Science 2013, 340, 964. doi: 10.1126/science.1234751  doi: 10.1126/science.1234751

    89. [89]

      Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. J. Am. Chem. Soc. 2011, 133, 6078. doi: 10.1021/ja201156s  doi: 10.1021/ja201156s

    90. [90]

      Murugadoss, A.; Kai, N.; Sakurai, H. Nanoscale 2012, 4, 1280. doi: 10.1039/c2nr11727d  doi: 10.1039/c2nr11727d

    91. [91]

      Mohanty, J. S.; Xavier, P. L.; Chaudhari, K.; Bootharaju, M. S.; Goswami, N.; Pal, S. K.; Pradeep, T. Nanoscale2012, 4, 4255. doi: 10.1039/c2nr30729d  doi: 10.1039/c2nr30729d

    92. [92]

      Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Angew. Chem. Int. Ed. 2016, 55, 922. doi: 10.1002/anie.201509381  doi: 10.1002/anie.201509381

    93. [93]

      Udayabhaskararao, T.; Sun, Y.; Goswami, N.; Pal, S. K.; Balasubramanian, K.; Pradeep, T. Angew. Chem. Int. Ed. 2012, 51, 2155. doi: 10.1002/anie.201107696  doi: 10.1002/anie.201107696

    94. [94]

      Du, W.; Jin, S.; Xiong, L.; Chen, M.; Zhang, J.; Zou, X.; Pei, Y.; Wang, S.; Zhu, M. J. Am. Chem. Soc. 2017, 139, 1618. doi: 10.1021/jacs.6b11681  doi: 10.1021/jacs.6b11681

    95. [95]

      Kang, X.; Xiong, L.; Wang, S.; Yu, H.; Jin, S.; Song, Y.; Chen, T.; Zheng, L.; Pan, C.; Pei, Y.; et al.Chem.-Eur. J. 2016, 22, 17145. doi: 10.1002/chem.201603893  doi: 10.1002/chem.201603893

    96. [96]

      Choi, J. P.; Fields-Zinna, C. A.; Stiles, R. L.; Balasubramanian, R.; Douglas, A. D.; Crowe, M. C.; Murray, R. W. J. Phys. Chem. C 2010, 114, 15890. doi: 10.1021/jp9101114  doi: 10.1021/jp9101114

    97. [97]

      Wu, Z. Angew. Chem. Int. Ed. 2012, 51, 2934. doi: 10.1002/anie.201107822  doi: 10.1002/anie.201107822

    98. [98]

      Wang, S.; Song, Y.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X.; Chen, M.; Li, P.; Zhu, M. J. Am. Chem. Soc. 2015, 137, 4018. doi: 10.1021/ja511635g  doi: 10.1021/ja511635g

    99. [99]

      Li, Q.; Luo, T. Y.; Taylor, M. G.; Wang, S.; Zhu, X.; Song, Y.; Mpourmpakis, G.; Rosi, N. L.; Jin, R. Sci. Adv. 2017, 3, e1603193. doi: 10.1126/sciadv.1603193  doi: 10.1126/sciadv.1603193

    100. [100]

      Yang, S.; Chai, J.; Chen, T.; Rao, B.; Pan, Y.; Yu, H.; Zhu, M. Inorg. Chem. 2017, 56, 1771. doi: 10.1021/acs.inorgchem.6b02016  doi: 10.1021/acs.inorgchem.6b02016

    101. [101]

      Kang, X.; Silalai, C.; Lv, Y.; Sun, G.; Chen, S.; Yu, H.; Xu, F.; Zhu, M. Eur. J. Inorg. Chem. 2017, 2017, 1414. doi: 10.1002/ejic.201601513  doi: 10.1002/ejic.201601513

    102. [102]

      Wang, M.; Wu, Z.; Chu, Z.; Yang, J.; Yao, C. Chem.-Asian J. 2014, 9, 1006. doi: 10.1002/asia.201301562  doi: 10.1002/asia.201301562

    103. [103]

      Tian, S.; Yao, C.; Liao, L.; Xia, N.; Wu, Z. Chem. Commun. 2015, 51, 11773. doi: 10.1039/c5cc03267a  doi: 10.1039/c5cc03267a

    104. [104]

      Lin, C. A. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I.; et al. ACS Nano 2009, 3, 395. doi: 10.1021/nn800632j  doi: 10.1021/nn800632j

    105. [105]

      Shang, L.; Dong, S.; Nienhaus, G. Nano Today 2011, 6, 401. doi: 10.1016/j.nantod.2011.06.004  doi: 10.1016/j.nantod.2011.06.004

    106. [106]

      Wu, Z.; Jin, R. Nano Lett.2010, 10, 2568. doi: 10.1021/nl101225f  doi: 10.1021/nl101225f

    107. [107]

      Xiang, J.; Li, P.; Song, Y.; Liu, X.; Chong, H.; Jin, S.; Pei, Y.; Yuan, X.; Zhu, M. Nanoscale 2015, 7, 18278. doi: 10.1039/c5nr05131b  doi: 10.1039/c5nr05131b

    108. [108]

      Fan, J.; Song, Y.; Chai, J.; Yang, S.; Chen, T.; Rao, B.; Yu, H.; Zhu, M. Nanoscale 2016, 8, 15317. doi: 10.1039/c6nr04255d  doi: 10.1039/c6nr04255d

    109. [109]

      Li, Q.; Taylor, M. G.; Kirschbaum, K.; Lambright, K. J.; Zhu, X.; Mpourmpakis, G.; Jin, R. J. Colloid Interface Sci. 2017, 505, 1202. doi: 10.1016/j.jcis.2017.06.049  doi: 10.1016/j.jcis.2017.06.049

    110. [110]

      Sels, A.; Salassa, G.; Pollitt, S.; Guglieri, C.; Rupprechter, G.; Barrabés, N.; Bürgi, T. J. Phys. Chem. C 2017, 121, 10919. doi: 10.1021/acs.jpcc.6b12066  doi: 10.1021/acs.jpcc.6b12066

    111. [111]

      Niihori, Y.; Kikuchi, Y.; Kato, A.; Matsuzaki, M.; Negishi, Y. ACS Nano 2015, 9, 9347. doi: 10.1021/acsnano.5b03435  doi: 10.1021/acsnano.5b03435

    112. [112]

      Kothalawala, N.; Kumara, C.; Ferrando, R.; Dass, A. Chem. Commun. 2013, 49, 10850. doi: 10.1039/c3cc45669b  doi: 10.1039/c3cc45669b

    113. [113]

      Jupally, V. R.; Dass, A. Phys. Chem. Chem. Phys. 2014, 16, 10473. doi: 10.1039/c3cp54343a  doi: 10.1039/c3cp54343a

    114. [114]

      Krishnadas, K. R.; Ghosh, A.; Baksi, A.; Chakraborty, I.; Natarajan, G.; Pradeep, T. J. Am. Chem. Soc.2015, 138, 140. doi: 10.1021/jacs.5b09401  doi: 10.1021/jacs.5b09401

    115. [115]

      Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Nat. Commun. 2016, 7, 13447. doi: 10.1038/ncomms13447  doi: 10.1038/ncomms13447

    116. [116]

      Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. ACS Nano 2017, 11, 6015. doi: 10.1021/acsnano.7b01912  doi: 10.1021/acsnano.7b01912

    117. [117]

      Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Som, A.; Pradeep, T. Acc. Chem. Res. 2017, 50, 1988. doi: 10.1021/acs.accounts.7b00224  doi: 10.1021/acs.accounts.7b00224

    118. [118]

      Krishnadas, K. R.; Ghosh, D.; Ghosh, A.; Natarajan, G.; Pradeep, T. J. Phys. Chem. C 2017, 121, 23224. doi: 10.1021/acs.jpcc.7b07605  doi: 10.1021/acs.jpcc.7b07605

    119. [119]

      Yang, S.; Chai, J.; Song, Y.; Fan, J.; Chen, T.; Wang, S.; Yu, H.; Li, X.; Zhu, M. J. Am. Chem. Soc. 2017, 139, 5668. doi: 10.1021/jacs.7b00668  doi: 10.1021/jacs.7b00668

    120. [120]

      Chai, J.; Lv, Y.; Yang, S.; Song, Y.; Zan, X.; Li, Q.; Yu, H.; Wu, M.; Zhu, M. J. Phys. Chem. C 2017, 121, 21665. doi: 10.1021/acs.jpcc.7b05074  doi: 10.1021/acs.jpcc.7b05074

    121. [121]

      Yao, Q.; Feng, Y.; Fung, V.; Yu, Y.; Jiang, D. E.; Yang, J.; Xie, J. Nat. Commun. 2017, 8, 1555. doi: 10.1038/s41467-017-01736-5  doi: 10.1038/s41467-017-01736-5

  • 加载中
    1. [1]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    2. [2]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    3. [3]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    4. [4]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    5. [5]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    6. [6]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    7. [7]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    8. [8]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    9. [9]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    10. [10]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    14. [14]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    15. [15]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    16. [16]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    17. [17]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    18. [18]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    19. [19]

      Chunqing OuMeijia XiaoXinyue ZhengXianzhou HuangSuleixin YangYingying LengXiaowei LiuXiuqi LiangLinjiang SongYanjie YouShaohua YaoChangyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275

    20. [20]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

Metrics
  • PDF Downloads(9)
  • Abstract views(566)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return