Citation: GUO Xiaohong, ZHOU Ying, SHI Lihong, ZHANG Yan, ZHANG Caihong, DONG Chuan, ZHANG Guomei, SHUANG Shaomin. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 818-824. doi: 10.3866/PKU.WHXB201712081 shu

Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation

  • Corresponding author: ZHANG Guomei, gmzhang@sxu.edu.cn SHUANG Shaomin, smshuang@sxu.edu.cn
  • Received Date: 3 November 2017
    Revised Date: 4 December 2017
    Accepted Date: 4 December 2017
    Available Online: 8 July 2017

    Fund Project: Primary Research and Development Plan of Shanxi Province, China 201703D321031The project was supported by the National Natural Science Foundation of China (21475080, 21571116, 21575084), Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi Province, China (TYMIT), Shanxi Province Hundred Talent Project, the Youth Science Foundation of Shanxi Province, China (201701D221029) and Primary Research and Development Plan of Shanxi Province, China (201703D321031)Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi Province, China TYMITthe National Natural Science Foundation of China 21575084the Youth Science Foundation of Shanxi Province, China 201701D221029the National Natural Science Foundation of China 21571116the National Natural Science Foundation of China 21475080

  • Metal nanoclusters (MNCs), as a new type of nano-material, possess excellent properties such as facile synthesis, strong light stability, low toxicity, excellent biocompatibility, and high luminous efficiency. Aggregation-induced emission (AIE), which can enhance the luminescence properties of MNCs, has resulted in MNCs attracting significant attention. In this thesis, L-glutathione (GSH)-protected copper nanoclusters (GS@CuNCs) were prepared by a "one-pot" method in aqueous solution without additional reducing agents. The GS@CuNCs were characterized by UV-Vis absorption spectroscopy and fluorescence spectroscopy. Upon excitation at 370 nm, the fluorescence spectrum of GS@CuNCs displayed the maximum emission peak at 610 nm. The as-prepared CuNCs generate a striking fluorescence intensity via aggregation-induced emission (AIE). The AIE property of GS@CuNCs was examined for the aggregates in different organic solvents, such as ethanol, methanol, and dimethylformamide. Since the aggregation degree was controlled by the content of organic solvent, we further measured the fluorescence intensity of GS@CuNCs in different volume ratios of a water-ethanol mixture solution. The fluorescence intensity of GS@CuNCs exhibited an approximately 30-fold increase at 85% of ethanol content, as compared to that in aqueous solution. A possible mechanism may be that intramolecular motions are restricted in ethanol, resulting in a significant increase of fluorescence intensity. Moreover, only very weak emissions were recorded for the CuNC dispersion in aqueous solution; however, an apparent luminescence enhancement was observed in both luminescence spectra and by naked eyes under UV light, with a gradual increase in the ethanol content in the water-ethanol mixture from 0% to 85%. Additionally, we developed a new selective and sensitive turn-on fluorescent sensor for the detection of trivalent aluminum ions (Al3+) based on cation-induced aggregation methods. Among the 15 types of metal cations studied, only Al3+ visibly increased the fluorescence emission of the GS@CuNCs. These results indicated that the GS@CuNCs were highly selective to Al3+ than other metal ions, which may result from the electrostatic and coordination interactions between the trivalent aluminum ions and monovalent carboxylic anions from GSH in the CuNCs. The response of the probe to Al3+ exhibited a good linear range of 2–20 μmol·L-1 and the detection limit was 33 nmol·L-1. Thus, the weak fluorescence intensity of CuNCs was increased markedly by the AIE of Al3+, and could construct an interesting fluorescent platform for sensing aluminum ions. The property of AIE of GS@CuNCs may expand the potential applications of nanocluster materials to biosensors and cell imaging.
  • 加载中
    1. [1]

      De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. doi: 10.1021/CR960386P  doi: 10.1021/CR960386P

    2. [2]

      Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2012, 41, 3210. doi: 10.1039/c1cs15245a  doi: 10.1039/c1cs15245a

    3. [3]

      Sen, B.; Sheet, S. K.; Thounaojam, R.; Jamatia, R.; Pal, A. K.; Aguan, K.; Khatua, S. Spectrochim. Acta A 2017, 173, 537. doi: 10.1016/j.saa.2016.10.005  doi: 10.1016/j.saa.2016.10.005

    4. [4]

      Niu, C. X.; Liu, Q. L.; Shang, Z. H.; Zhao, L.; Ouyang, J. Nanoscale 2015, 7, 8457. doi: 10.1039/c5nr00554j  doi: 10.1039/c5nr00554j

    5. [5]

      Andruch, V.; Balogh, I. S.; Kocurov, L.; Sandrejov, J. Spectrosc. Rev. 2013, 48, 161. doi: 10.1080/05704928.2012.697087  doi: 10.1080/05704928.2012.697087

    6. [6]

      Yalcinkaya, O.; Erdogan, H.; Ciftci, K.; Turker, A. R. Spectrosc. Lett. 2012, 45, 344. doi: 10.1080/00387010.2012.666700  doi: 10.1080/00387010.2012.666700

    7. [7]

      Zhou, T. Y.; Lin, L. P.; Rong, M. C.; Jiang, Y. Q.; Chen, X. Anal. Chem. 2013, 85, 9839. doi: 10.1021/ac4023764  doi: 10.1021/ac4023764

    8. [8]

      Choi, Y. W.; Park, G. J.; Na, Y. J.; Jo, H. Y.; Lee, S. A.; You, G. R.; Kim, C. Sens. Actuators B 2014, 194, 343. doi: 10.1016/j.snb.2013.12.114  doi: 10.1016/j.snb.2013.12.114

    9. [9]

      Salifoglou, A. Coordin. Chem. Rev. 2012, 228, 297. doi: 10.1016/S0010-8545(02)00084-X  doi: 10.1016/S0010-8545(02)00084-X

    10. [10]

      Gupta, V. K.; Singh, A. K.; Mergu, N. Electrochim. Acta 2014, 117, 405. doi: 10.1016/j.electacta.2013.11.143  doi: 10.1016/j.electacta.2013.11.143

    11. [11]

      Khanab, M.; Soylak, M. RSC Adv. 2015, 5, 62433. doi: 10.1039/c5ra10046a  doi: 10.1039/c5ra10046a

    12. [12]

      Liu, Z. C.; Li, Y. X.; Ding, Y. J.; Yang, Z. Y.; Wang, B. D.; Li, Y.; Li, T. R.; Luo, W.; Zhu, W. P.; Xie, Z. P.; et al. Sens. Actuators B 2014, 197, 200. doi: 10.1016/j.snb.2014.02.084  doi: 10.1016/j.snb.2014.02.084

    13. [13]

      Naskar, B.; Modak, R.; Sikdar, Y.; Maiti, D. K.; Bauza, A.; Frontera, A.; Katarkar, A.; Chaudhuri, K.; Goswami, S. Sens. Actuators B 2017, 239, 1194. doi: 10.1016/j.snb.2016.08.148  doi: 10.1016/j.snb.2016.08.148

    14. [14]

      Sanghavi, B. J.; Srivastava, A. K. Analyst 2013, 138, 1395. doi: 10.1039/c2an36330e  doi: 10.1039/c2an36330e

    15. [15]

      Sanghavi, B. J.; Sitaula, S.; Griep, M. H.; Karna, S. P.; Ali, M. F.; Swami, N. S. Anal. Chem. 2013, 85, 8158. doi: 10.1021/ac4011205  doi: 10.1021/ac4011205

    16. [16]

      Sunnapu, O.; Kotla, N. G.; Maddiboyina, B.; Singaravadivel, S.; Sivaraman, G. RSC Adv. 2016, 6, 656. doi: 10.1039/C5RA20482H  doi: 10.1039/C5RA20482H

    17. [17]

      Vengaian, K. M.; Britto, C. D.; Sekar, K.; Sivaraman, G.; Singaravadivel, S. Sens. Actuators B 2016, 235, 232. doi: 10.1016/j.snb.2016.04.180  doi: 10.1016/j.snb.2016.04.180

    18. [18]

      Kumawat, L. K.; Mergu, N.; Singh, A. K.; Gupta, V. K. Sens. Actuators B 2015, 212, 389. doi: 10.1016/j.snb.2015.02.027  doi: 10.1016/j.snb.2015.02.027

    19. [19]

      Wan, X. J.; Liu, H. Y.; Yao, S.; Liu, T. Q.; Yao, Y. W. Macromol. Rapid Commun. 2014, 35, 323. doi: 10.1002/marc.201300810  doi: 10.1002/marc.201300810

    20. [20]

      Gui, S. L.; Huang, Y. Y.; Hu, F.; Jin, Y. L.; Zhang, G. X.; Yan, L. S.; Zhang, D. Q.; Zhao, R. Anal. Chem.2015, 87, 1470. doi: 10.1021/ac504153c  doi: 10.1021/ac504153c

    21. [21]

      Jin, R. C. Nanoscale 2010, 2, 343. doi: 10.1039/B9NR00160C  doi: 10.1039/B9NR00160C

    22. [22]

      Lu, Y. Z.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594. doi: 10.1039/c2cs15325d  doi: 10.1039/c2cs15325d

    23. [23]

      Xiong, X. L.; Tang, Y.; Zhang, L. L.; Zhao, S. L. Talanta 2015, 132, 790. doi: 10.1016/j.talanta.2014.10.022  doi: 10.1016/j.talanta.2014.10.022

    24. [24]

      Chen, L. Y.; Wang, C. W.; Yuan, Z. Q.; Chang, H. T. Anal. Chem. 2015, 87, 216. doi: 10.1021/ac503636j  doi: 10.1021/ac503636j

    25. [25]

      Fang, J. S.; Zhang, Y. W.; Zhou, Y. M.; Zhao, S.; Zhang, C.; Zhang, H. X.; Sheng, X. L. J. Colloid Interface Sci. 2017, 488, 196. doi: 10.1016/j.jcis.2016.10.070  doi: 10.1016/j.jcis.2016.10.070

    26. [26]

      Zhang, L. B.; Wang, E. K. Nano Today 2014, 9, 132. doi: 10.1016/j.nantod.2014.02.010  doi: 10.1016/j.nantod.2014.02.010

    27. [27]

      Liu, C. P.; Wu, T. H.; Liu, C. Y.; Lin, S. Y. Anal. Chim. Acta 2014, 849, 57. doi: 10.1016/j.aca.2014.08.022  doi: 10.1016/j.aca.2014.08.022

    28. [28]

      Zhou, Y.; Zeng, H. C. J. Am. Chem. Soc. 2014, 136, 13805. doi: 10.1021/ja506905j  doi: 10.1021/ja506905j

    29. [29]

      Sun, J.; Yang, F.; Yang, X. R. Nanoscale 2015, 7, 16372. doi: 10.1039/C5NR04826E  doi: 10.1039/C5NR04826E

    30. [30]

      Qu, F.; Song, Q. W.; You, J. M. Anal. Methods 2016, 8, 4324. doi: 10.1039/C6AY00088F  doi: 10.1039/C6AY00088F

    31. [31]

      Jia, X. F.; Li, J.; Wang, E. K. Small 2013, 9, 3873. doi: 10.1002/smll.201300896  doi: 10.1002/smll.201300896

    32. [32]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; et al. Chem. Commun. 2001, 18, 1740. doi: 10.1039/b105159h  doi: 10.1039/b105159h

    33. [33]

      Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 29, 4332. doi: 10.1039/b904665h  doi: 10.1039/b904665h

    34. [34]

      Shi, J. Q.; Chang, N.; Li, C. H.; Mei, J.; Deng, C. M.; Luo, X. L.; Liu, Z. P.; Bo, Z. S.; Dong, Y. Q.; Tang, B. Z. Chem. Commun. 2012, 48, 10675. doi: 10.1039/c2cc35641d  doi: 10.1039/c2cc35641d

    35. [35]

      Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. J. Am. Chem. Soc. 2012, 134, 16662. doi: 10.1021/ja306199p  doi: 10.1021/ja306199p

    36. [36]

      Li, Z. H.; Guo, S.; Lu, C. Analyst 2015, 140, 2719. doi: 10.1039/c5an00017c  doi: 10.1039/c5an00017c

    37. [37]

      Li, B. Z.; Wang, X.; Shen, X.; Zhu, W. Y.; Xu, L.; Zhou, X. M. J. Colloid Interface Sci.2016, 467, 90. doi: 10.1016/j.jcis.2016.01.002  doi: 10.1016/j.jcis.2016.01.002

    38. [38]

      Luo, Y. W.; Miao, H.; Yang, X. M. Talanta 2015, 144, 488. doi: 10.1016/j.talanta.2015.07.001  doi: 10.1016/j.talanta.2015.07.001

    39. [39]

      Zhao, M. Q.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877. doi: 10.1021/JA980438N  doi: 10.1021/JA980438N

    40. [40]

      Wang, C.; Ling, L.; Yao, Y. G.; Song, Q. J. Nano Res. 2015, 8, 1975. doi: 10.1007/s12274-015-0707-0  doi: 10.1007/s12274-015-0707-0

    41. [41]

      Das, N. K.; Ghosh, S.; Priya, A.; Datta, S.; Mukherjee, S. J. Phys. Chem. C 2015, 119, 24657. doi: 10.1021/acs.jpcc.5b08123  doi: 10.1021/acs.jpcc.5b08123

    42. [42]

      Ren, Y.; Dong, Y. Q.; Lam, J. W. Y.; Tang, B. Z.; Wong, K. S. Chem. Phys. Lett. 2005, 402, 468. doi: 10.1016/j.cplett.2004.12.103  doi: 10.1016/j.cplett.2004.12.103

    43. [43]

      Bellina, B.; Compagnon, I.; Bertorelle, F.; Broyer, M.; Antoine, R.; Dugourd, P.; Gell, L.; Kulesza, A.; Mitric, R.; Bonacic-Koutecky, V. J. Phys. Chem. C 2011, 115, 24549. doi: 10.1021/jp207158v  doi: 10.1021/jp207158v

    44. [44]

      Raize, O.; Argaman, Y.; Yannai, S. Biotechnol. Bioeng. 2004, 87, 451. doi: 10.1002/bit.20136  doi: 10.1002/bit.20136

  • 加载中
    1. [1]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    2. [2]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    3. [3]

      Min LiuBin FengFeiyi ChuDuoyang FanFan ZhengFei ChenWenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    6. [6]

      Tong-Tong ZhouGuan-Yu DingXue LiLi-Li WenXiao-Xu PangYing-Chen DuanJu-Yang HeGuo-Gang ShanZhong-Min Su . Design of near-infrared aggregation-induced emission photosensitizers by π-bridge engineering for boosting theranostic efficacy. Chinese Chemical Letters, 2025, 36(6): 110341-. doi: 10.1016/j.cclet.2024.110341

    7. [7]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    8. [8]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    9. [9]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    10. [10]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    11. [11]

      Kun ZhangXin-Yue LouYan WangWeiwei HuanYing-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464

    12. [12]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    13. [13]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    14. [14]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    15. [15]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    16. [16]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    17. [17]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    18. [18]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    19. [19]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    20. [20]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

Metrics
  • PDF Downloads(8)
  • Abstract views(557)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return