Citation: REN Xiuqing, LIN Xinzhang, FU Xuemei, LIU Chao, YAN Jinghui, HUANG Jiahui. Synthesis of High Yield Au21(SR)15 Nanoclusters[J]. Acta Physico-Chimica Sinica, ;2018, 34(7): 825-829. doi: 10.3866/PKU.WHXB201712013 shu

Synthesis of High Yield Au21(SR)15 Nanoclusters

  • Corresponding author: LIU Chao, chaoliu@dicp.ac.cn HUANG Jiahui, jiahuihuang@dicp.ac.cn
  • Received Date: 27 October 2017
    Revised Date: 22 November 2017
    Accepted Date: 22 November 2017
    Available Online: 1 July 2017

    Fund Project: the National Natural Science Foundation of China 21601178the Young Thousand Talents Program of China, and the "Strategic Priority Research Program" of the Chinese Academy of Sciences XDA09030103The project was supported by the National Natural Science Foundation of China (21601178, 21473186), the Young Thousand Talents Program of China, and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA09030103)the National Natural Science Foundation of China 21473186

  • In recent years, Au nanoclusters have attracted much attention as new nanomaterials, which contain several to two hundred Au atoms and are protected by ligands. The structures and properties of Au nanoclusters are usually sensitive to the particle size due to quantum confinement effect. Au nanoclusters have been applied to different fields, such as optical properties, catalysis, and biology. There are two common methods for the synthesis of atomically precise Au nanoclusters: "size focusing" and "ligand exchange". Although a series of Au nanocluster have been obtained via "size focusing" and "ligand exchange", obtaining high yield of such Au nanoclusters is a challenge. Au21(S-Adam)15 was previously synthesized via etching Au18 nanoclusters with excess thiols, and its crystal structure was determined by X-ray diffraction crystallography; however, the yield of Au nanoclusters was low. In this study, we prepared Au21(S-Adam)15 in high yield via conversion of Au23(S-Adam)16 to Au21(S-Adam)15. Firstly, Au23(S-Adam)16 nanoclusters were synthesized using adamantanethiols(HS-Adam) as the protecting ligand and HAuCl4 as the gold resource in ethyl acetate solvent. Au23(S-Adam)16 were further etched with excess thiols at room temperature. After reacting for 30 min, highly pure Au21(S-Adam)15, with high yield of ~20% based on HAuCl4 precursor, were successfully prepared. Au23(S-Adam)16 and Au21(S-Adam)15 were characterized by electrospray ionization (ESI), UV-Vis absorption spectroscopy, matrix-assisted laser desorption ionization (MALDI) mass spectrometry, and thermogravimetric analysis (TGA). ESI-MS and UV-Vis spectra confirm the high purity of the Au23(S-Adam)16. After conversion, UV-Vis spectra show the absorption peaks of Au21(S-Adam)15 at 700, 540, 435 and 380 nm. The MALDI-MS of Au21(S-Adam)15 shows several peaks at 6502, 6471, 6106, 5411, and 5048, assigned to Au21(S-Adam)14S, Au21(S-Adam)14, Au20(S-Adam)13, Au19(S-Adam)10, and Au18(S-Adam)9, respectively. The fragments of Au nanoclusters were produced by the strong laser intensity, which easily removes carbon tails from HS-Adam. Thermogravimetric analysis (TGA) was also performed to check the purity of Au21(S-Adam)15 nanoclusters. The TGA curve shows a weight loss of 42% (expected value, 38%). UV-Vis absorption spectroscopy was performed to track the conversion of Au23(S-Adam)16 to Au21(S-Adam)15. It was found that Au23(S-Adam)16 can convert to Au21(S-Adam)15 with a conversion efficiency of up to 97%, using excess thiols at room temperature within 30 min. In general, we successfully synthesized highly pure Au21(S-Adam)15 nanoclusters, with high yield of ∼20% based on HAuCl4, by etching Au23(S-Adam)16 with excess thiols at room temperature.
  • 加载中
    1. [1]

      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116 (18), 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    2. [2]

      Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Acc. Chem. Res. 2012, 45 (9), 1470. doi: 10.1021/ar200331z  doi: 10.1021/ar200331z

    3. [3]

      Priecel, P.; Salami, H. A.; Padilla, R. H.; Zhong, Z. Y.; Lopez-Sanchez, J. A. Chin. J. Catal. 2016, 37 (10), 1619. doi: 10.1016/S1872-2067(16)62475-0  doi: 10.1016/S1872-2067(16)62475-0

    4. [4]

      Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105 (4), 1547. doi: 10.1021/cr030067f  doi: 10.1021/cr030067f

    5. [5]

      Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C. J. Am. Chem. Soc. 2015, 137 (14), 4610. doi: 10.1021/ja513152h  doi: 10.1021/ja513152h

    6. [6]

      Jin, R. Nanoscale 2010, 2 (3), 343. doi: 10.1039/b9nr00160c  doi: 10.1039/b9nr00160c

    7. [7]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130 (18), 5883. doi: 10.1021/ja801173r  doi: 10.1021/ja801173r

    8. [8]

      Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130 (12), 3754. doi: 10.1021/ja800561b  doi: 10.1021/ja800561b

    9. [9]

      Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132 (24), 8280. doi: 10.1021/ja103592z  doi: 10.1021/ja103592z

    10. [10]

      Liu, C.; Li, T.; Li, G.; Nobusada, K.; Zeng, C.; Pang, G.; Rosi, N. L.; Jin, R. Angew. Chem. Int. Ed. 2015, 54 (34), 9826. doi: 10.1021/ja103592z  doi: 10.1021/ja103592z

    11. [11]

      Song, Y.; Fu, F.; Zhang, J.; Chai, J.; Kang, X.; Li, P.; Li, S.; Zhou, H.; Zhu, M. Angew. Chem. Int. Ed. 2015, 54 (29), 8430. doi: 10.1002/anie.201501830  doi: 10.1002/anie.201501830

    12. [12]

      Chen, Y.; Zeng, C.; Liu, C.; Kirschbaum, K.; Gayathri, C.; Gil, R. R.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2015, 137 (32), 10076. doi: 10.1021/jacs.5b05378  doi: 10.1021/jacs.5b05378

    13. [13]

      Das, A.; Li, T.; Nobusada, K.; Zeng, Q.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2012, 134 (50), 20286. doi: 10.1021/ja3101566  doi: 10.1021/ja3101566

    14. [14]

      Pei, Y.; Zeng, X. C. Nanoscale 2012, 4 (14), 4054. doi: 10.1039/c2nr30685a  doi: 10.1039/c2nr30685a

    15. [15]

      Philip, R.; Chantharasupawong, P.; Qian, H.; Jin, R.; Thomas, J. Nano Lett. 2012, 12 (9), 4661. doi: 10.1021/nl301988v  doi: 10.1021/nl301988v

    16. [16]

      Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K.; Han, M. S.; Mirkin, C. A. Science 2006, 312 (5776), 1027. doi: 10.1126/science.1125559  doi: 10.1126/science.1125559

    17. [17]

      Li, G.; Jin, R. J. Am. Chem. Soc. 2014, 136 (32), 11347. doi: 10.1021/ja503724j  doi: 10.1021/ja503724j

    18. [18]

      Yoskamtorn, T.; Yamazoe, S.; Takahata, R.; Nishigaki, J. I.; Thivasasith, A.; Limtrakul, J.; Tsukuda, T. ACS Catal. 2014, 4 (10), 3696. doi: 10.1021/cs501010x  doi: 10.1021/cs501010x

    19. [19]

      Fang, J.; Li, J.; Zhang, B.; Yuan, X.; Asakura, H.; Tanaka, T.; Teramura, K.; Xie, J.; Yan, N. Nanoscale 2015, 7 (14), 6325. doi: 10.1039/c5nr00549c  doi: 10.1039/c5nr00549c

    20. [20]

      Tan, Y.; Liu, X. Y.; Zhang, L.; Wang, A.; Li, L.; Pan, X.; Miao, S.; Haruta, M.; Wei, H.; Wang, H.; et al. Angew. Chem. Int. Ed. 2017, 56 (10), 2709. doi: 10.1002/anie.201610736  doi: 10.1002/anie.201610736

    21. [21]

      Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48 (38), 6954. doi: 10.1002/anie.200804497  doi: 10.1002/anie.200804497

    22. [22]

      Chen, H. J.; Liu, C.; Wang, M.; Zhang, C. F.; Li, G.; Wang, F. Chin. J. Catal. 2016, 37 (10), 1787. doi: 10.1016/S1872-2067(16)62478-6  doi: 10.1016/S1872-2067(16)62478-6

    23. [23]

      Ishida, R.; Arii, S.; Kurashige, W.; Yamazoe, S.; Koyasu, K.; Negishi, Y.; Tsukuda, T. Chin. J. Catal. 2016, 37 (10), 1656. doi: 10.1016/S1872-2067(16)62501-9  doi: 10.1016/S1872-2067(16)62501-9

    24. [24]

      Zhou, Y.; Li, G. Acta Phys. -Chim. Sin. 2017, 33(7), 1297.  doi: 10.3866/PKU.WHXB201704101

    25. [25]

      Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R.J. Am. Chem. Soc. 2009, 131 (7), 2490. doi: 10.1021/ja809157f  doi: 10.1021/ja809157f

    26. [26]

      Antonello, S.; Perera, N. V.; Ruzzi, M.; Gascon, J. A.; Maran, F. J. Am. Chem. Soc. 2013, 135 (41), 15585. doi: 10.1021/ja407887d  doi: 10.1021/ja407887d

    27. [27]

      Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. J. Phys. Chem. Lett. 2010, 1 (19), 2903. doi: 10.1021/jz100944k  doi: 10.1021/jz100944k

    28. [28]

      Si, S.; Gautier, C.; Boudon, J.; Taras, R.; Gladiali, S.; Bürgi, T. J. Phys. Chem. C 2009, 113 (30), 12966. doi: 10.1021/jp9044385  doi: 10.1021/jp9044385

    29. [29]

      Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 2012, 51 (52), 13114. doi: 10.1002/anie.201207098  doi: 10.1002/anie.201207098

    30. [30]

      Nimmala, P. R.; Dass, A. J. Am. Chem. Soc. 2011, 133 (24), 9175. doi: 10.1021/ja201685f  doi: 10.1021/ja201685f

    31. [31]

      Liu, C.; Lin, J.; Shi, Y.; Li, G. Nanoscale 2015, 7 (14), 5987. doi: 10.1039/c5nr00543d  doi: 10.1039/c5nr00543d

    32. [32]

      Balasubramanian, R.; Guo, R.; Mills, A. J.; Murray, R. W. J. Am. Chem. Soc. 2005, 127 (22), 8126. doi: 10.1021/ja050793v  doi: 10.1021/ja050793v

    33. [33]

      Zeng, C.; Chen, Y.; Das, A.; Jin, R. J. Phys. Chem. Lett. 2015, 6 (15), 2976. doi: 10.1021/acs.jpclett.5b01150  doi: 10.1021/acs.jpclett.5b01150

    34. [34]

      Chen, S.; Xiong, L.; Wang, S.; Ma, Z.; Jin, S.; Sheng, H.; Pei, Y.; Zhu, M. J. Am. Chem. Soc. 2016, 138 (34), 10754. doi: 10.1021/jacs.6b06004  doi: 10.1021/jacs.6b06004

    35. [35]

      Dass, A.; Stevenson, A.; Dubay, G. R.; Tracy, J. B.; Murray, R. W. J. Am. Chem. Soc. 2008, 130 (18), 5940. doi: 10.1021/ja710323t  doi: 10.1021/ja710323t

    36. [36]

      Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135 (49), 18264. doi: 10.1021/ja409177s  doi: 10.1021/ja409177s

  • 加载中
    1. [1]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    2. [2]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    3. [3]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    4. [4]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    5. [5]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    6. [6]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    7. [7]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    8. [8]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    9. [9]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    10. [10]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    11. [11]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    14. [14]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    17. [17]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    18. [18]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    19. [19]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    20. [20]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

Metrics
  • PDF Downloads(13)
  • Abstract views(382)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return