Citation: LIN Xueting, FU Mingli, HE Hui, WU Junliang, CHEN Limin, YE Daiqi, HU Yun, WANG Yifan, WEN William. Synthesis of MnOx-CeO2 Using Metal-Organic Framework as Sacrificial Template and Its Performance in the Toluene Catalytic Oxidation Reaction[J]. Acta Physico-Chimica Sinica, ;2018, 34(6): 719-730. doi: 10.3866/PKU.WHXB201712011 shu

Synthesis of MnOx-CeO2 Using Metal-Organic Framework as Sacrificial Template and Its Performance in the Toluene Catalytic Oxidation Reaction

  • Corresponding author: FU Mingli, mlfu@scut.edu.cn
  • Received Date: 27 October 2017
    Revised Date: 20 November 2017
    Accepted Date: 27 November 2017
    Available Online: 1 June 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China 51108187The project was supported by the National Natural Science Foundation of China (No.51578245, No.51378213, No.51108187, No.21777047), and the Guangdong Natural Science Foundation, China (Grant No. 2016A030311003)The project was supported by the National Natural Science Foundation of China 51378213The project was supported by the National Natural Science Foundation of China 51578245The project was supported by the National Natural Science Foundation of China 21777047the Guangdong Natural Science Foundation, China 2016A030311003

  • A series of MnOx-CeO2 with different Mn contents was prepared using CeBTC-MOF as the sacrificial template. These constituted a new kind of porous crystalline materials assembled by cerium as metal ions and 1, 3, 5-benzenetricarboxylic acid as organic ligands. The composite oxides exhibited good redox properties and were tested as catalysts in the oxidation of toluene. To obtain insight into the structure-activity relationship of the catalysts, the samples were characterized using powder X-ray diffraction (XRD), nitrogen adsorption-desorption, thermogravimetric analysis (TG), elemental analysis (EA), inductively coupled plasma-optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (Raman), and UV-Vis diffuse reflectance spectroscopy. Studies of the CeBTC-MOF template showed that the metal-organic framework could be completely decomposed at a calcination temperature of 300 ℃. Therefore, CeBTC-MOF decomposed and generated CO2 and H2O during the calcination process. The gas molecule spilled out from the structure to form the interior void space. The spilling out could be controlled by varying the calcination temperature. This regulated the quantity and size of the interior void, which in turn made the surface area controllable. The secondary building unit of CeBTC-MOF was oxidized to nano-sized crystalline particles, which exhibited outstanding interfacial contact. SEM and TEM results showed that the composite oxides prepared by pyrolysis of the CeBTC-MOF template exhibited rod-shaped nanocrystalline particles. While introducing Mn into MOF, part of Mn entered the ceria lattice to form solid solution and the remaining Mn was dispersed on CeO2 surface. The elemental mappings revealed a well-proportioned distribution of Mn, which confirmed the successful formation of bimetallic metal oxides using the MOF-template method. All the samples exhibited sizes and shapes similar to their parent MOFs. As for catalytic activity, all the composite oxides showed better performances than pure CeO2 for catalytic oxidation of toluene. This could be attributed to higher concentration of oxygen vacancies, which was characterized by Raman spectroscopy. In addition, the XPS results indicated that Mn4+/(Mn2++Mn3+), Ce4+/Ce3+, Olatt (lattice oxygen), and Osur(surface oxygen) all participated in the redox process during catalytic oxidation of toluene, which helped elucidate the mechanism at a micro level.Interestingly, the catalytic activity did not improve further when the Mn content of the composite oxides reached 5%. This could be ascribed to two different states of the dispersed Mn: monolayer dispersion state and crystalline phase. The strong interaction between ceria oxides and dispersed Mn species played an important role in affecting catalytic activity. The results showed the presence of a monolayer dispersion threshold (6.2%), confirmed by XPS characterization, which was in accordance with all the characterization results; it was proved that this threshold had a significant impact on the catalytic activity. When the dispersed Mn content was lower than the monolayer dispersion threshold, Mn reacted with the surface CeO2 in the form of an incorporation model, leading to charge transfer and higher concentration of oxygen vacancies, which in turn effectively promoted the catalytic performance. When the dispersed Mn content exceeded the monolayer dispersion threshold, Mn3O4 was formed on the CeO2 surface; this disrupted the promotion of catalytic activity, which explains the same catalytic activity of all the samples (5% MnOx-CeO2, 8% MnOx-CeO2, and 10% MnOx-CeO2).This successful formation of bimetallic metal oxides using CeBTC-MOF template indicated that composite oxide synthesis was feasible using the MOF template method. To obtain high catalyst performance of these composite oxides, it was important to control the metal content at the level of the monolayer dispersion threshold.
  • 加载中
    1. [1]

      Kim, K.; Ahn, H. Appl. Catal. B: Environ. 2009, 91, 308.doi: 10.1016/j.apcatb.2009.05.037  doi: 10.1016/j.apcatb.2009.05.037

    2. [2]

      Li, P.; He, C.; Cheng, J.; Ma, C.; Dou, B.; Hao, Z. Appl. Catal. B: Environ. 2011, 101, 570. doi: 10.1016/j.apcatb.2010.10.030  doi: 10.1016/j.apcatb.2010.10.030

    3. [3]

      Liotta, L. Appl. Catal. B: Environ. 2010, 100, 403. doi: 10.1016/j.apcatb.2010.08.023  doi: 10.1016/j.apcatb.2010.08.023

    4. [4]

      De Rivas, B.; Fonseca, R.; Sampedro, C.; Gutiérrez-Ortiz, J. Appl. Catal. B: Environ. 2009, 90, 545. doi: 10.1016/j.apcatb.2009.04.017  doi: 10.1016/j.apcatb.2009.04.017

    5. [5]

      Okal, J.; Zawadzki, M. Appl. Catal. B: Environ.2009, 89, 22. doi: 10.1016/j.apcatb.2008.11.024  doi: 10.1016/j.apcatb.2008.11.024

    6. [6]

      Wu, X.; Liu, S.; Weng, D.; Lin, F.; Ran, R. Hazard. Mater. 2011, 187, 283. doi: 10.1016/j.jhazmat.2011.01.010  doi: 10.1016/j.jhazmat.2011.01.010

    7. [7]

      Tikhomirov, K.; Krocher, O.; Elsener, M.; Wokaun, A. Appl. Catal. B: Environ. 2006, 64, 72. doi: 10.1016/j.apcatb.2005.11.003  doi: 10.1016/j.apcatb.2005.11.003

    8. [8]

      Becerra, M.; Arias, N.; Giraldo, O.; Suarez, F.; Gomez, M.; Lopez, A. Appl. Catal. B: Environ. 2011, 102, 260. doi: 10.1016/j.apcatb.2010.12.006  doi: 10.1016/j.apcatb.2010.12.006

    9. [9]

      Santos, V.; Pereira, M.; Orfao, J.; Figueiredo, J. Appl. Catal. B: Environ. 2010, 99, 353. doi: 10.1016/j.apcatb.2010.07.007  doi: 10.1016/j.apcatb.2010.07.007

    10. [10]

      Bastos, S.; Orfao, J.; Freitas, M.; Pereira, M.; Figueiredo, J. Appl. Catal. B: Environ. 2009, 93, 30. doi: 10.1016/j.apcatb.2009.09.009  doi: 10.1016/j.apcatb.2009.09.009

    11. [11]

      Shan, W.; Ma, N.; Yang, J.; Dong, X.; Liu, C.; Wei, L. J. Nat. Gas Chem. 2010, 19, 86. doi: 10.1016/S1003-9953[09]60033-5  doi: 10.1016/S1003-9953[09]60033-5

    12. [12]

      Champness, N.; Schroder, M. Curr. Opin. Solid. St. M. 1998, 3, 419. doi: 10.1016/S1359-0286[98]80055-7  doi: 10.1016/S1359-0286[98]80055-7

    13. [13]

      Zhang, L.; Wu, H.; Madhavi, S.; Hng, H.; Lou, X. J. Am. Chem. Soc. 2012, 134, 17388. doi: 10.1021/ja307475c  doi: 10.1021/ja307475c

    14. [14]

      Fuertes, A.; Centeno, T. J. Mater. Chem. 2005, 15, 1079. doi: 10.1039/b416007j  doi: 10.1039/b416007j

    15. [15]

      Das, R.; Pachfule, P.; Banerjee, R.; Poddar, P. Nanoscale 2012, 4, 591. doi: 10.1039/c1nr10944h  doi: 10.1039/c1nr10944h

    16. [16]

      Zhang, F.; Chen, C.; Xiao, W.; Xu, L.; Zhang, N. Catal. Commun. 2012, 26, 25. doi: 10.1016/j.catcom.2012.04.028  doi: 10.1016/j.catcom.2012.04.028

    17. [17]

      Xu, L.; Chen, C.; Wang, R.; Luo, J.; Liu, Y.; Zhang, N. Chem. J. Chin. Univ. 2013, 34, 1907.  doi: 10.7503/cjcu20130260

    18. [18]

      Liu, K.; You, H.; Jia, G.; Zheng, Y.; Huang, Y.; Song, Y.; Yang, M.; Zhang, L.; Zhang, H. Cryst. Growth Des. 2010, 10, 790. doi: 10.1021/cg901170j  doi: 10.1021/cg901170j

    19. [19]

      Dai, Y.; Li, S.; Tang, C.; Yao, X.; Qi, L.; Liu, B.; Gao, F.; Dong, L. Chin. J. Inorg. Chem. 2012, 28, 1555.
       

    20. [20]

      Wang, C.; Zhao, B.; Xie, Y. Chin. J. Catal. 2003, 24, 475.  doi: 10.3321/j.issn:0253-9837.2003.06.017

    21. [21]

      Kaliaguine, S.; Van Neste, A.; Szabo, V.; Gallot, J.; Bassir, M.; Muzychuk, R. Appl. Catal. A: Gen. 2001, 209, 345. doi: 10.1016/S0926-860X[00]00779-1  doi: 10.1016/S0926-860X[00]00779-1

    22. [22]

      Wu, Z.; Li, M.; Howe, J.; Meyer, H.; Overbury, S. Langmuir 2010, 26, 16595. doi: 10.1021/la101723w  doi: 10.1021/la101723w

    23. [23]

      Hungria, A.; Fernandez-Garcia, M.; Anderson, J.; Martinez-Arias, A. J. Catal. 2005, 235, 262. doi: 10.1016/j.jcat.2005.08.012  doi: 10.1016/j.jcat.2005.08.012

    24. [24]

      Deng, C.; Duan, L.; Xu, X.; Xie, Y. Nat. Gas Chem. Ind. 1992, 6, 6.

    25. [25]

      Taniguchi, T.; Watanabe, T.; Sugiyama, N.; Subramani, A.; Wagata, H.; Matsushita, N.; Yoshimura, M. J. Phys. Chem. C 2009, 46, 19789. doi: 10.1021/jp9049457  doi: 10.1021/jp9049457

    26. [26]

      Liu, Y.; Wu, J.; Guo, Q.; Gui, L.; Tang, Y. Chin. J. Catal. 1987, 8, 14.
       

    27. [27]

      Gui, L.; Liu, Y.; Guo, Q.; Huang, H.; Tang, Y.Sci. China Chem. 1985, 6, 509.
       

    28. [28]

      Zhang, Y.; Zhang, L.; Deng, J.; Dai, H.; He, H. Inorg. Chem. 2009, 48, 2181. doi: 10.1021/ic802195j  doi: 10.1021/ic802195j

    29. [29]

      Li, Y.; Sun, Q.; Kong, M.; Shi, W.; Huang, J.; Tang, J.; Zhao, X.J. Phys. Chem. C 2011, 115, 14050. doi: 10.1021/jp202720g  doi: 10.1021/jp202720g

    30. [30]

      Kan, J.; Deng, L.; Li, B.; Huang, Q.; Zhu, S.; Shen, S.; Chen, Y. Appl. Catal. A: Gen. 2017, 530, 21. doi: 10.1016/j.apcata.2016.11.013  doi: 10.1016/j.apcata.2016.11.013

    31. [31]

      Wan, H.; Li, D.; Dai, Y.; Hu, Y.; Liu, B.; Dong, L. J. Mol. Catal. A -Chem. 2010, 332, 32. doi: 10.1016/j.molcata.2010.08.016  doi: 10.1016/j.molcata.2010.08.016

    32. [32]

      Di Monte, R.; KasPar, J.; Fornasiero, P.; Graziani, M.; Paze, C.; Gubitosa, G. Inorg. Chim. Acta 2002, 334, 318. doi: 10.1016/S0020-1693[02]00800-9  doi: 10.1016/S0020-1693[02]00800-9

    33. [33]

      Qi, G.; Yang, R. J. Phys. Chem. B 2004, 108, 40. doi: 10.1021/jp048431h  doi: 10.1021/jp048431h

    34. [34]

      Wang, X.; Kang, Q.; Li, D. Appl. Catal. B: Environ. 2009, 86, 166. doi: 10.1016/j.apcatb.2008.08.009  doi: 10.1016/j.apcatb.2008.08.009

    35. [35]

      Rico-Pérez, V.; Aneggi, E.; Bueno-López, A.; Trovarelli, A. Appl. Catal. B: Environ.2016, 197, 95. doi: 10.1016/j.apcatb.2016.02.051  doi: 10.1016/j.apcatb.2016.02.051

    36. [36]

      Liao, Y.; Fu, M.; Chen, L.; Wu, J.; Huang, B.; Ye, D. Catal. Today 2013, 216, 220. doi: 10.1016/j.cattod.2013.06.017  doi: 10.1016/j.cattod.2013.06.017

    37. [37]

      Lin, X.; Li, S.; He, H.; Wu, Z.; Wu, J.; Chen, L.; Ye, D.; Fu, M. Appl. Catal. B: Environ. 2017, doi: 10.1016/j.apcatb.2017.06.071  doi: 10.1016/j.apcatb.2017.06.071

    38. [38]

      Liu, X.; Li, S.; Sun, M.; Yu, C.; Huang, B. Acta Phys. -Chim. Sin. 2016, 32, 1236.  doi: 10.3866/PKU.WHXB201602251

    39. [39]

      Li, D.; Yu, Q.; Li, S.; Wan, H.; Liu, L.; Qi, L.; Liu, B.; Gao, F.; Dong, L.; Chen, Y. Chem.-A Eur. J. 2011, 17, 5668. doi: 10.1002/chem.201002786  doi: 10.1002/chem.201002786

    40. [40]

      Zhang, Y.; Xie, Y.; Zhang, Y.; Zhang, D.; Tang, Y. Sci. China Chem. 1986, 8, 805.
       

    41. [41]

      Parida, K.; Dash, S.; Singha, S. Appl. Catal. A: Gen. 2008, 351, 59. doi: 10.1016/j.apcata.2008.08.027  doi: 10.1016/j.apcata.2008.08.027

    42. [42]

      Yu, Q.; Zhang, S.; Wang, X. Ind. Catal. 2007, 15, 12.
       

    43. [43]

      Dong, L.; Chen, Y. Chinese J. Inorg. Chem. 2000, 2, 250.  doi: 10.3321/j.issn:1001-4861.2000.02.011

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(8)
  • Abstract views(379)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return