Citation: GAO Yunyan, CAI Wenjiao, OU Zhize, MA Tuotuo, YI Na, LI Zhiyuan. DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 230-240. doi: 10.3866/PKU.WHXB201711281 shu

DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides

  • Corresponding author: OU Zhize, ouzhize@nwpu.edu.cn
  • Received Date: 30 October 2017
    Revised Date: 21 November 2017
    Accepted Date: 21 November 2017
    Available Online: 28 February 2017

    Fund Project: the Natural Science Foundation of Shaanxi Province, China 2016JM2013The project was supported by the Natural Science Foundation of Shaanxi Province, China (2016JM2013), the National Natural Science Foundation of China (21073143), and the NPU Foundation for Graduate Innovation (Z2017208)the NPU Foundation for Graduate Innovation Z2017208the National Natural Science Foundation of China 21073143

  • The rational design of naphthalimide derivatives, which can target specific DNA sequences and secondary structural DNA, is important for developing potential anticancer drugs. In this work, the naphthalimide-imidazole conjugate (3) and its alkylated derivatives (4ac) were synthesized, and characterized by 1H NMR, 13C NMR, and mass spectrometry (MS). The interactions of these compounds with calf thymus DNA (CT DNA) and G-quadruplex DNA were investigated by UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, and fluorescence resonance energy transfer (FRET). The studies revealed that the naphthalimides with imidazolium displayed higher affinity towards CT DNA than those with the imidazole moiety, suggesting that the electrostatic interaction plays an important role in the interactions between the naphthalimide and the DNA duplex. All of the obtained naphthalimide derivatives possessed high affinity (Ka > 4 × 106 L·mol-1) towards the telomeric G-quadruplex, and exhibited more than 30-fold selectivity for the quadruplex versus CT DNA. The viscosity of CT DNA increased upon addition of the naphthalimides, suggesting that the latter could bind to the former via a classical intercalation mode. FRET results indicated that the compounds 3 and 4ac stabilized the structure of the telomeric G-quadruplex by increasing its melting temperature by 5.8, 10.7, 8.4, and 7.8 ℃, respectively. CD spectral results suggested that the telomeric G-quadruplex maintained a mixture of antiparallel and parallel conformation in the presence of the naphthalimide derivatives (3 and 4ac) in a buffer containing K+. The fluorescence intensity of the naphthalimide derivatives 3 and 4a, b with octylimidazolium was significantly enhanced upon interaction with the G-quadruplex, which could be attributed to the immersion of naphthalimide moieties in the hydrophobic region of the G-quadruplex. However, the fluorescence of compound 4c with hexadecylimidazolium increased only slightly upon addition of the G-quadruplex. Molecular docking studies indicated that the naphthalimide derivatives were associated with the loop and groove of the human telomeric G-quadruplex via hydrophobic interactions. A hydrogen bond was formed between the imidazole group in compound 3 and the guanine residue DG16. The phosphate group from the G-quadruplex backbone pointed to the imidazolium moiety of 4ac, suggesting that the electrostatic interactions also played an important role. Being fluorescent, the cellular localization of 3 and 4ac could be conveniently tracked by fluorescence imaging. The results showed that compounds 4ac, which contained the imidazolium moiety, were mainly localized in the nucleus after 4.0 h of incubation, while compound 3 with the imidazole moiety was partially localized in the nucleus. The enhancement of the nuclear localization of 4ac may be attributed to the positive charge in 4ac and their higher DNA affinity. Based on the MTT assay results, it was concluded that compounds 4ac displayed much stronger cytotoxic activity against breast cancer cells than 3. Furthermore, compounds 4a and 4b selectively inhibited the A549 cells over normal human lung fibroblast MRC-5 cells, with high anticancer activity. These results indicated that the G-quadruplex binding affinity and anticancer activity of naphthalimide could be modulated by conjugation with the imidazole moiety.
  • 加载中
    1. [1]

      Banerjee, S.; Veale, E. B.; Phelan, C. M.; Murphy, S. A.; Tocci, G. M.; Gillespie, L. J.; Frimannsson, D. O.; Kelly J. M.; Gunnlaugsson, T. Chem. Soc. Rev. 2013, 42, 1601. doi: 10.1039/C2CS35467E  doi: 10.1039/C2CS35467E

    2. [2]

      Ratain, M. J.; Rosner, G.; Allen, S. L.; Costanza, M.; Van Echo, D. A.; Henderson, I. C.; Schilsky, R. L. J. Clin. Oncol. 1995, 13, 741. doi: 10.1200/JCO.1995.13.3.741  doi: 10.1200/JCO.1995.13.3.741

    3. [3]

      Ratain, M. J.; Mick, R.; Berezin, F.; Janisch, L.; Schilsky, R. L.; Williams, S. F.; Smiddy, J. Clin. Pharmacol. Ther. 1991, 50, 573. doi: 10.1038/clpt.1991.183  doi: 10.1038/clpt.1991.183

    4. [4]

      Kokosza, K.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D. G. Bioorg. Med. Chem 2015, 23, 3135. doi: 10.1016/j.bmc.2015.04.079  doi: 10.1016/j.bmc.2015.04.079

    5. [5]

      Quintana-Espinoza, P.; Martin-Acosta, P.; Amesty, A.; Martin-Rodriguez, P.; Lorenzo-Castrillejo, I.; Fernandez-Perez, L.; Machin, F.; Estevez-Braun, A. Bioorg. Med. Chem. 2017, 25, 1976. doi: 10.1016/j.bmc.2017.02.024  doi: 10.1016/j.bmc.2017.02.024

    6. [6]

      Verma, M.; Luxami, V.; Paul, K. RSC Adv. 2015, 5, 41803. doi: 10.1039/C5RA00925A  doi: 10.1039/C5RA00925A

    7. [7]

      Rong, R.-X.; Sun, Q.; Ma, C.-L.; Chen, B.; Wang, W.-Y.; Wang, Z. A.; Wang, K. R.; Cao, Z. R.; Li, X. L. Med. Chem. Commun. 2016, 7, 679. doi: 10.1039/C5MD00543D  doi: 10.1039/C5MD00543D

    8. [8]

      Tian, Z.; Huang, Y.; Zhang, Y.; Song, L.; Qiao, Y.; Xu, X.; Wang, C. J. Photochem. Photobiol. B Biol. 2016, 158, 1. doi: 10.1016/j.jphotobiol.2016.01.017  doi: 10.1016/j.jphotobiol.2016.01.017

    9. [9]

      Li, F.; Cui, J.; Guo, L.; Qian, X.; Ren, W.; Wang, K.; Liu, F. Bioorg. Med. Chem.2007, 15, 5114. doi: 10.1016/j.bmc.2007.05.032  doi: 10.1016/j.bmc.2007.05.032

    10. [10]

      Qian, X.; Li, Y.; Xu, Y.; Liu, Y.; Qu, B. Bioorg. Med. Chem. Lett. 2004, 14, 2665. doi: 10.1016/j.bmcl.2004.02.059  doi: 10.1016/j.bmcl.2004.02.059

    11. [11]

      Brana, M. F.; Cacho, M.; Garcia, M. A.; de Pascual-Teresa, B.; Ramos, A.; Dominguez, M. T.; Pozuelo, J. M.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M.; et al. J. Med. Chem. 2004, 47, 1391. doi: 10.1021/jm0308850  doi: 10.1021/jm0308850

    12. [12]

      Hsiang, Y. H.; Liu, L. F. Cancer Res. 1988, 48, 1722.

    13. [13]

      Hurley, L. H.; Boyd, F. L. Trends Pharmacol. Sci. 1988, 9, 402. doi:10.1016/0165-6147(88)90067-3  doi: 10.1016/0165-6147(88)90067-3

    14. [14]

      Johnson, C. A.; Hudson, G. A.; Hardebeck, L. K. E.; Jolley, E. A.; Ren, Y.; Lewis, M.; Znosko, B. M. Bioorg. Med. Chem. 2015, 23, 3586. doi: 10.1016/j.bmc.2015.04.030  doi: 10.1016/j.bmc.2015.04.030

    15. [15]

      Tan, S.; Sun, D.; Lyu, J.; Sun, X.; Wu, F.; Li, Q.; Yang, Y.; Liu, J.; Wang, X.; Chen, Z.; et al. Bioorg. Med. Chem. 2015, 23, 5672. doi: 10.1016/j.bmc.2015.07.011  doi: 10.1016/j.bmc.2015.07.011

    16. [16]

      Sun, Y.; Li, J.; Zhao, H.; Tan, L. J. Inorg. Biochem. 2016, 163, 88. doi: 10.1016/j.jinorgbio.2016.04.028  doi: 10.1016/j.jinorgbio.2016.04.028

    17. [17]

      Zhao, S. S.; Li, L. L.; Liu, X. R.; Ding, Z. C.; Yang, Z. W. Acta Phys. -Chim. Sin. 2017, 33, 356.  doi: 10.3866/PKU.WHXB201610191

    18. [18]

      Mijatovic, T.; Mahieu, T.; Bruyere, C.; De Neve, N.; Dewelle, J.; Simon, G.; Dehoux, M. J. M.; van der Aar, E.; Haibe-Kains, B.; Bontempi, G.; et al. Neoplasia 2008, 10, 573. doi: 10.1593/neo.08290  doi: 10.1593/neo.08290

    19. [19]

      Ji, L.; Yang, S.; Li, S.; Liu, S.; Tang, S.; Liu, Z.; Meng, X.; Yu, S. Oncotarget 2017, 8, 37394. doi: 10.18632/oncotarget.16962  doi: 10.18632/oncotarget.16962

    20. [20]

      Paeschkel, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps, H. J. Nat. Struct. Mol. Biol. 2005, 12, 847. doi: 10.1038/nsmb982  doi: 10.1038/nsmb982

    21. [21]

      Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Proc. Nat. Acad. Sci. USA 2002, 99, 11593. doi: 10.1073/pnas.182256799  doi: 10.1073/pnas.182256799

    22. [22]

      Zhang, J.; Yu, Q.; Li, Q.; Yang, L.; Chen, L.; Zhou, Y.; Liu, J. J. Inorg. Biochem. 2014, 134, 1. doi: 10.1016/j.jinorgbio.2013.12.005  doi: 10.1016/j.jinorgbio.2013.12.005

    23. [23]

      Mulholland, K.; Wu, C. J. Chem. Inf. Model. 2016, 56, 2093. doi: 10.1021/acs.jcim.6b00473  doi: 10.1021/acs.jcim.6b00473

    24. [24]

      Drygin, D.; Siddiqui-Jain, A.; O'Brien, S.; Schwaebe, M.; Lin, A.; Bliesath, J.; Ho, C. B.; Proffitt, C.; Trent, K.; Whitten, J. P.; et al. Cancer Res. 2009, 69, 7653. doi: 10.1158/0008-5472.CAN-09-1304  doi: 10.1158/0008-5472.CAN-09-1304

    25. [25]

      Wang, Y. F.; Zhang, X.; Liu, C. X.; Zhou, X. Acta Chim. Sin. 2017, 75, 692.  doi: 10.6023/A17040162

    26. [26]

      Ou, T.; Lu, Y.; Tan, J.; Huang, Z.; Wong, K.; Gu, L. ChemMedChem 2008, 3, 690. doi: 10.1002/cmdc.200700300  doi: 10.1002/cmdc.200700300

    27. [27]

      Neidle, S. J. Med. Chem. 2016, 59, 5987. doi: 10.1021/acs.jmedchem.5b0183  doi: 10.1021/acs.jmedchem.5b0183

    28. [28]

      Zheng, X.; Mu, K.; Tan, C.; Cao, Q.; Mao, Z. Sci. China Chem. 2014, 44, 484.  doi: 10.1360/032013-340

    29. [29]

      Sissi, C.; Lucatello, L.; Krapcho, A. P.; Maloney, D. J.; Boxer, M. B.; Camarasa, M. V.; Pezzoni, G.; Menta, E.; Palumbo, M. Bioorg. Med. Chem. 2007, 15, 555. doi: 10.1016/j.bmc.2006.09.029  doi: 10.1016/j.bmc.2006.09.029

    30. [30]

      Peduto, A.; Pagano, B.; Petronzi, C.; Massa, A.; Esposito, V.; Virgilio, A.; Paduano, F.; Trapasso, F.; Fiorito, F.; Florio, S.; et al. Bioorg. Med. Chem. 2011, 19, 6419. doi: 10.1016/j.bmc.2011.08.062  doi: 10.1016/j.bmc.2011.08.062

    31. [31]

      Ou, Z.; Qian, Y.; Gao, Y.; Wang, Y.; Yang, G.; Li, Y.; Jiang, K.; Wang, X. RSC Adv. 2016, 6, 36923. doi: 10.1039/c6ra01441k  doi: 10.1039/c6ra01441k

    32. [32]

      Ou, Z.; Xu, M.; Gao, Y.; Hu, R.; Li, Q.; Cai, W.; Wang, Z.; Qian, Y.; Yang, G. New J. Chem. 2017, 41, 9397. doi: 10.1039/c7nj02366a  doi: 10.1039/c7nj02366a

    33. [33]

      Sur, S.; Tiwari, V.; Sinha, D.; Kamran, M. Z.; Dubey, K. D.; Kumar, G. S.; Tandon, V. ACS Omega 2017, 2, 966. doi: 10.1021/acsomega.6b00523  doi: 10.1021/acsomega.6b00523

    34. [34]

      Mancini, J.; Rousseau, P.; Castor, K. J.; Sleiman, H. F.; Autexier, C. Biochimie 2016, 121, 287. doi: 10.1016/j.biochi.2015.12.015  doi: 10.1016/j.biochi.2015.12.015

    35. [35]

      Hu, M. H.; Chen, S. B.; Wang, B.; Ou, T. M.; Gu, L. Q.; Tan, J. H.; Huang, Z. S. Nucleic Acids Res. 2017, 45, 1606. doi: 10.1093/nar/gkw1195  doi: 10.1093/nar/gkw1195

    36. [36]

      Huang, J.; Li, G.; Wu, Z.; Song, Z.; Zhou, Y.; Shuai, L.; Weng, X.; Zhou, X.; Yang, G. Chem. Commun. 2009, 8, 902. doi: 10.1039/b819789j  doi: 10.1039/b819789j

    37. [37]

      Czirok, J. B.; Bojtar, M.; Hessz, D.; Baranyai, P.; Drahos, L.; Kubinyi, M.; Bittera, I. Sensor Actuat B-Chem. 2013, 182, 280. doi: 10.1016/j.snb.2013.02.046  doi: 10.1016/j.snb.2013.02.046

    38. [38]

      Wang, D.; Zhang, X.; He, C.; Duan, C. Org. Biomol. Chem. 2010, 8, 2923. doi: 10.1039/C004148C  doi: 10.1039/C004148C

    39. [39]

      Kim, H. N.; Lee, E. H.; Xu, Z.; Kim, H. E.; Lee, H. S.; Lee, J. H.; Yoon, J. Biomaterial 2012, 33, 2282. doi: 10.1016/j.biomaterials.2011.11.073  doi: 10.1016/j.biomaterials.2011.11.073

    40. [40]

      Street, S.; Chin, D.; Hollingworth, G.; Berry, M.; Morales, J. C.; Galan, M. C. Chem. Eur. J. 2017, 23, 6953. doi: 10.1002/chem.201700140  doi: 10.1002/chem.201700140

    41. [41]

      Chen, J. S.; Zhou, P. W.; Li, G. Y.; Chu, T. S.; He, G. Z. J. Phys. Chem. B, 2013, 117, 5212. doi: 10.1021/jp4017757  doi: 10.1021/jp4017757

    42. [42]

      Romanucci, V.; Marchand, A.; Mendoza, O.; D'Alonzo, D.; Zarrelli, A.; Gabelica, V.; Fabio, G. D. ACS Med. Chem. Lett. 2016, 7, 256. doi: 10.1021/acsmedchemlett.5b00408  doi: 10.1021/acsmedchemlett.5b00408

    43. [43]

      Fleming, A. M.; Ding, Y.; Alenko, A.; Burrows, C. J. ACS Infect. Dis. 2016, 2, 674. doi: 10.1021/acsinfecdis.6b00109  doi: 10.1021/acsinfecdis.6b00109

    44. [44]

      Xu, X. L.; Wang, J.; Yu, C. L.; Chen, W.; Li, Y. C.; Li, Y.; Zhang, H. B.; Yang, X. D. Bioorg. Med. Chem. Lett. 2014, 24, 4926. doi: 10.1016/j.bmcl.2014.09.045  doi: 10.1016/j.bmcl.2014.09.045

    45. [45]

      Elshaarawy, R. F. M.; Kheiralla, Z. H.; Rushdy, A. A.; Janiak, C. Inorg. Chim. Acta 2014, 421, 110. doi: 10.1016/j.ica.2014.05.029  doi: 10.1016/j.ica.2014.05.029

    46. [46]

      Ranke, J.; Cox, M.; Muller, A.; Schmidt, C.; Beyersmann, D. Toxicol. Environ. Chem. 2006, 88, 273. doi: 10.1080/02772240600589505  doi: 10.1080/02772240600589505

    47. [47]

      Luo, X.; Qian, Y. Chin. J. Org. Chem. 2013, 33, 2423.  doi: 10.6023/cjoc201305034

    48. [48]

      Manojkumar, K.; Charan, K. T. P.; Sivaramakrishna, A.; Jha, P. C.; Khedkar, V. M.; Siva, R.; Jayaraman, G.; Vijayakrishna, K. Biomacromolecules 2015, 16, 894. doi: 10.1021/bm5018029  doi: 10.1021/bm5018029

    49. [49]

      Rao, L.; Dworkin, J. D.; Nell, W. E.; Bierbach, U. J. Phys. Chem. B 2011, 115, 13701. doi: 10.1021/jp207265s  doi: 10.1021/jp207265s

    50. [50]

      Georgiades, S. N.; Karim, N. H. A.; Suntharalingam, K.; Vilar, R. Angew. Chem. Int. Ed. 2010, 49, 4020. doi: 10.1002/anie.200906363  doi: 10.1002/anie.200906363

    51. [51]

      Raju, G.; Vishwanath, S.; Prasad, A.; Patel, B. K.; Prabusankar, G. J. Mol. Struct. 2016, 1107, 291. doi: 10.1016/j.molstruc.2015.11.064  doi: 10.1016/j.molstruc.2015.11.064

    52. [52]

      Zhou, J.; Chang, A.; Wang, L.; Liu, Y.; Liu, X.; Shangguan, D. Org. Biomol. Chem. 2014, 12, 9207. doi: 10.1039/C4OB01274G  doi: 10.1039/C4OB01274G

    53. [53]

      Wang, K. R.; Qian, F.; Sun, Q.; Ma, C. L.; Rong, R. X.; Cao, Z. R., Wang, X. M.; Li, X. L. Chem. Biol. Drug Des. 2016, 87, 664. doi: 10.1111/cbdd.12698  doi: 10.1111/cbdd.12698

    54. [54]

      Ou, Z. Z.; Ju, B. L.; Gao, Y. Y.; Wang, Z. C.; Huang, G.; Qian, Y. M. Acta Phys. -Chim. Sin. 2015, 31, 2386.  doi: 10.3866/PKU.WHXB201510l3

    55. [55]

      Loganathan, R.; Ramakrishnan, S.; Suresh, E.; Riyasdeen, A.; Akbarsha, M. A.; Palaniandavar, M. Inorg. Chem. 2012, 51, 5512. doi: 10.1021/ic2017177  doi: 10.1021/ic2017177

    56. [56]

      Barton, J. K.; Goldberg, J. M.; Kumar, C. V.; Turro, N. J. J. Am. Chem. Soc. 1986, 108, 2081. doi: 10.1021/ja00268a057  doi: 10.1021/ja00268a057

    57. [57]

      Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Biochemistry 1993, 32, 2573. doi: 10.1021/bi00061a015  doi: 10.1021/bi00061a015

    58. [58]

      Ou, Z.; Wang, Y.; Gao, Y.; Wang, X.; Qian, Y.; Li, Y.; Wang, X. J. Inorg. Biochem. 2017, 166, 126. doi: 10.1016/j.jinorgbio.2016.11.012  doi: 10.1016/j.jinorgbio.2016.11.012

    59. [59]

      Sun, D.; Liu, Y.; Yu, Q.; Liu, D.; Zhou, Y.; Liu, J. J. Inorg. Biochem. 2015, 150, 90. doi: 10.1016/j.jinorgbio.2015.04.003  doi: 10.1016/j.jinorgbio.2015.04.003

    60. [60]

      Xu, X.; Wang, X.; Li, Y.; Wang, Y.; Yang, L. Nucleic Acids Res. 2012, 40, 7622. doi: 10.1093/nar/gks517  doi: 10.1093/nar/gks517

    61. [61]

      Chenoweth, D. M.; Dervan, P. B. Proc. Nat. Acad. Sci. USA 2009, 106, 13175. doi: 10.1073/pnas.0906532106  doi: 10.1073/pnas.0906532106

    62. [62]

      Ghosh, S.; Mendoza, O.; Cubo, L.; Rosu, F.; Gabelica, V.; White, A. J. P.; Vilar, R. Chem. Eur. J. 2014, 20, 4772. doi: 10.1002/chem.201304905  doi: 10.1002/chem.201304905

  • 加载中
    1. [1]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    2. [2]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    3. [3]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    4. [4]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    5. [5]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    6. [6]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    12. [12]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    15. [15]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    16. [16]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    20. [20]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

Metrics
  • PDF Downloads(10)
  • Abstract views(730)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return