Citation: GAO Yunyan, CAI Wenjiao, OU Zhize, MA Tuotuo, YI Na, LI Zhiyuan. DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 230-240. doi: 10.3866/PKU.WHXB201711281 shu

DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides

  • Corresponding author: OU Zhize, ouzhize@nwpu.edu.cn
  • Received Date: 30 October 2017
    Revised Date: 21 November 2017
    Accepted Date: 21 November 2017
    Available Online: 28 February 2017

    Fund Project: the Natural Science Foundation of Shaanxi Province, China 2016JM2013The project was supported by the Natural Science Foundation of Shaanxi Province, China (2016JM2013), the National Natural Science Foundation of China (21073143), and the NPU Foundation for Graduate Innovation (Z2017208)the NPU Foundation for Graduate Innovation Z2017208the National Natural Science Foundation of China 21073143

  • The rational design of naphthalimide derivatives, which can target specific DNA sequences and secondary structural DNA, is important for developing potential anticancer drugs. In this work, the naphthalimide-imidazole conjugate (3) and its alkylated derivatives (4ac) were synthesized, and characterized by 1H NMR, 13C NMR, and mass spectrometry (MS). The interactions of these compounds with calf thymus DNA (CT DNA) and G-quadruplex DNA were investigated by UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, and fluorescence resonance energy transfer (FRET). The studies revealed that the naphthalimides with imidazolium displayed higher affinity towards CT DNA than those with the imidazole moiety, suggesting that the electrostatic interaction plays an important role in the interactions between the naphthalimide and the DNA duplex. All of the obtained naphthalimide derivatives possessed high affinity (Ka > 4 × 106 L·mol-1) towards the telomeric G-quadruplex, and exhibited more than 30-fold selectivity for the quadruplex versus CT DNA. The viscosity of CT DNA increased upon addition of the naphthalimides, suggesting that the latter could bind to the former via a classical intercalation mode. FRET results indicated that the compounds 3 and 4ac stabilized the structure of the telomeric G-quadruplex by increasing its melting temperature by 5.8, 10.7, 8.4, and 7.8 ℃, respectively. CD spectral results suggested that the telomeric G-quadruplex maintained a mixture of antiparallel and parallel conformation in the presence of the naphthalimide derivatives (3 and 4ac) in a buffer containing K+. The fluorescence intensity of the naphthalimide derivatives 3 and 4a, b with octylimidazolium was significantly enhanced upon interaction with the G-quadruplex, which could be attributed to the immersion of naphthalimide moieties in the hydrophobic region of the G-quadruplex. However, the fluorescence of compound 4c with hexadecylimidazolium increased only slightly upon addition of the G-quadruplex. Molecular docking studies indicated that the naphthalimide derivatives were associated with the loop and groove of the human telomeric G-quadruplex via hydrophobic interactions. A hydrogen bond was formed between the imidazole group in compound 3 and the guanine residue DG16. The phosphate group from the G-quadruplex backbone pointed to the imidazolium moiety of 4ac, suggesting that the electrostatic interactions also played an important role. Being fluorescent, the cellular localization of 3 and 4ac could be conveniently tracked by fluorescence imaging. The results showed that compounds 4ac, which contained the imidazolium moiety, were mainly localized in the nucleus after 4.0 h of incubation, while compound 3 with the imidazole moiety was partially localized in the nucleus. The enhancement of the nuclear localization of 4ac may be attributed to the positive charge in 4ac and their higher DNA affinity. Based on the MTT assay results, it was concluded that compounds 4ac displayed much stronger cytotoxic activity against breast cancer cells than 3. Furthermore, compounds 4a and 4b selectively inhibited the A549 cells over normal human lung fibroblast MRC-5 cells, with high anticancer activity. These results indicated that the G-quadruplex binding affinity and anticancer activity of naphthalimide could be modulated by conjugation with the imidazole moiety.
  • 加载中
    1. [1]

      Banerjee, S.; Veale, E. B.; Phelan, C. M.; Murphy, S. A.; Tocci, G. M.; Gillespie, L. J.; Frimannsson, D. O.; Kelly J. M.; Gunnlaugsson, T. Chem. Soc. Rev. 2013, 42, 1601. doi: 10.1039/C2CS35467E  doi: 10.1039/C2CS35467E

    2. [2]

      Ratain, M. J.; Rosner, G.; Allen, S. L.; Costanza, M.; Van Echo, D. A.; Henderson, I. C.; Schilsky, R. L. J. Clin. Oncol. 1995, 13, 741. doi: 10.1200/JCO.1995.13.3.741  doi: 10.1200/JCO.1995.13.3.741

    3. [3]

      Ratain, M. J.; Mick, R.; Berezin, F.; Janisch, L.; Schilsky, R. L.; Williams, S. F.; Smiddy, J. Clin. Pharmacol. Ther. 1991, 50, 573. doi: 10.1038/clpt.1991.183  doi: 10.1038/clpt.1991.183

    4. [4]

      Kokosza, K.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D. G. Bioorg. Med. Chem 2015, 23, 3135. doi: 10.1016/j.bmc.2015.04.079  doi: 10.1016/j.bmc.2015.04.079

    5. [5]

      Quintana-Espinoza, P.; Martin-Acosta, P.; Amesty, A.; Martin-Rodriguez, P.; Lorenzo-Castrillejo, I.; Fernandez-Perez, L.; Machin, F.; Estevez-Braun, A. Bioorg. Med. Chem. 2017, 25, 1976. doi: 10.1016/j.bmc.2017.02.024  doi: 10.1016/j.bmc.2017.02.024

    6. [6]

      Verma, M.; Luxami, V.; Paul, K. RSC Adv. 2015, 5, 41803. doi: 10.1039/C5RA00925A  doi: 10.1039/C5RA00925A

    7. [7]

      Rong, R.-X.; Sun, Q.; Ma, C.-L.; Chen, B.; Wang, W.-Y.; Wang, Z. A.; Wang, K. R.; Cao, Z. R.; Li, X. L. Med. Chem. Commun. 2016, 7, 679. doi: 10.1039/C5MD00543D  doi: 10.1039/C5MD00543D

    8. [8]

      Tian, Z.; Huang, Y.; Zhang, Y.; Song, L.; Qiao, Y.; Xu, X.; Wang, C. J. Photochem. Photobiol. B Biol. 2016, 158, 1. doi: 10.1016/j.jphotobiol.2016.01.017  doi: 10.1016/j.jphotobiol.2016.01.017

    9. [9]

      Li, F.; Cui, J.; Guo, L.; Qian, X.; Ren, W.; Wang, K.; Liu, F. Bioorg. Med. Chem.2007, 15, 5114. doi: 10.1016/j.bmc.2007.05.032  doi: 10.1016/j.bmc.2007.05.032

    10. [10]

      Qian, X.; Li, Y.; Xu, Y.; Liu, Y.; Qu, B. Bioorg. Med. Chem. Lett. 2004, 14, 2665. doi: 10.1016/j.bmcl.2004.02.059  doi: 10.1016/j.bmcl.2004.02.059

    11. [11]

      Brana, M. F.; Cacho, M.; Garcia, M. A.; de Pascual-Teresa, B.; Ramos, A.; Dominguez, M. T.; Pozuelo, J. M.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M.; et al. J. Med. Chem. 2004, 47, 1391. doi: 10.1021/jm0308850  doi: 10.1021/jm0308850

    12. [12]

      Hsiang, Y. H.; Liu, L. F. Cancer Res. 1988, 48, 1722.

    13. [13]

      Hurley, L. H.; Boyd, F. L. Trends Pharmacol. Sci. 1988, 9, 402. doi:10.1016/0165-6147(88)90067-3  doi: 10.1016/0165-6147(88)90067-3

    14. [14]

      Johnson, C. A.; Hudson, G. A.; Hardebeck, L. K. E.; Jolley, E. A.; Ren, Y.; Lewis, M.; Znosko, B. M. Bioorg. Med. Chem. 2015, 23, 3586. doi: 10.1016/j.bmc.2015.04.030  doi: 10.1016/j.bmc.2015.04.030

    15. [15]

      Tan, S.; Sun, D.; Lyu, J.; Sun, X.; Wu, F.; Li, Q.; Yang, Y.; Liu, J.; Wang, X.; Chen, Z.; et al. Bioorg. Med. Chem. 2015, 23, 5672. doi: 10.1016/j.bmc.2015.07.011  doi: 10.1016/j.bmc.2015.07.011

    16. [16]

      Sun, Y.; Li, J.; Zhao, H.; Tan, L. J. Inorg. Biochem. 2016, 163, 88. doi: 10.1016/j.jinorgbio.2016.04.028  doi: 10.1016/j.jinorgbio.2016.04.028

    17. [17]

      Zhao, S. S.; Li, L. L.; Liu, X. R.; Ding, Z. C.; Yang, Z. W. Acta Phys. -Chim. Sin. 2017, 33, 356.  doi: 10.3866/PKU.WHXB201610191

    18. [18]

      Mijatovic, T.; Mahieu, T.; Bruyere, C.; De Neve, N.; Dewelle, J.; Simon, G.; Dehoux, M. J. M.; van der Aar, E.; Haibe-Kains, B.; Bontempi, G.; et al. Neoplasia 2008, 10, 573. doi: 10.1593/neo.08290  doi: 10.1593/neo.08290

    19. [19]

      Ji, L.; Yang, S.; Li, S.; Liu, S.; Tang, S.; Liu, Z.; Meng, X.; Yu, S. Oncotarget 2017, 8, 37394. doi: 10.18632/oncotarget.16962  doi: 10.18632/oncotarget.16962

    20. [20]

      Paeschkel, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps, H. J. Nat. Struct. Mol. Biol. 2005, 12, 847. doi: 10.1038/nsmb982  doi: 10.1038/nsmb982

    21. [21]

      Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Proc. Nat. Acad. Sci. USA 2002, 99, 11593. doi: 10.1073/pnas.182256799  doi: 10.1073/pnas.182256799

    22. [22]

      Zhang, J.; Yu, Q.; Li, Q.; Yang, L.; Chen, L.; Zhou, Y.; Liu, J. J. Inorg. Biochem. 2014, 134, 1. doi: 10.1016/j.jinorgbio.2013.12.005  doi: 10.1016/j.jinorgbio.2013.12.005

    23. [23]

      Mulholland, K.; Wu, C. J. Chem. Inf. Model. 2016, 56, 2093. doi: 10.1021/acs.jcim.6b00473  doi: 10.1021/acs.jcim.6b00473

    24. [24]

      Drygin, D.; Siddiqui-Jain, A.; O'Brien, S.; Schwaebe, M.; Lin, A.; Bliesath, J.; Ho, C. B.; Proffitt, C.; Trent, K.; Whitten, J. P.; et al. Cancer Res. 2009, 69, 7653. doi: 10.1158/0008-5472.CAN-09-1304  doi: 10.1158/0008-5472.CAN-09-1304

    25. [25]

      Wang, Y. F.; Zhang, X.; Liu, C. X.; Zhou, X. Acta Chim. Sin. 2017, 75, 692.  doi: 10.6023/A17040162

    26. [26]

      Ou, T.; Lu, Y.; Tan, J.; Huang, Z.; Wong, K.; Gu, L. ChemMedChem 2008, 3, 690. doi: 10.1002/cmdc.200700300  doi: 10.1002/cmdc.200700300

    27. [27]

      Neidle, S. J. Med. Chem. 2016, 59, 5987. doi: 10.1021/acs.jmedchem.5b0183  doi: 10.1021/acs.jmedchem.5b0183

    28. [28]

      Zheng, X.; Mu, K.; Tan, C.; Cao, Q.; Mao, Z. Sci. China Chem. 2014, 44, 484.  doi: 10.1360/032013-340

    29. [29]

      Sissi, C.; Lucatello, L.; Krapcho, A. P.; Maloney, D. J.; Boxer, M. B.; Camarasa, M. V.; Pezzoni, G.; Menta, E.; Palumbo, M. Bioorg. Med. Chem. 2007, 15, 555. doi: 10.1016/j.bmc.2006.09.029  doi: 10.1016/j.bmc.2006.09.029

    30. [30]

      Peduto, A.; Pagano, B.; Petronzi, C.; Massa, A.; Esposito, V.; Virgilio, A.; Paduano, F.; Trapasso, F.; Fiorito, F.; Florio, S.; et al. Bioorg. Med. Chem. 2011, 19, 6419. doi: 10.1016/j.bmc.2011.08.062  doi: 10.1016/j.bmc.2011.08.062

    31. [31]

      Ou, Z.; Qian, Y.; Gao, Y.; Wang, Y.; Yang, G.; Li, Y.; Jiang, K.; Wang, X. RSC Adv. 2016, 6, 36923. doi: 10.1039/c6ra01441k  doi: 10.1039/c6ra01441k

    32. [32]

      Ou, Z.; Xu, M.; Gao, Y.; Hu, R.; Li, Q.; Cai, W.; Wang, Z.; Qian, Y.; Yang, G. New J. Chem. 2017, 41, 9397. doi: 10.1039/c7nj02366a  doi: 10.1039/c7nj02366a

    33. [33]

      Sur, S.; Tiwari, V.; Sinha, D.; Kamran, M. Z.; Dubey, K. D.; Kumar, G. S.; Tandon, V. ACS Omega 2017, 2, 966. doi: 10.1021/acsomega.6b00523  doi: 10.1021/acsomega.6b00523

    34. [34]

      Mancini, J.; Rousseau, P.; Castor, K. J.; Sleiman, H. F.; Autexier, C. Biochimie 2016, 121, 287. doi: 10.1016/j.biochi.2015.12.015  doi: 10.1016/j.biochi.2015.12.015

    35. [35]

      Hu, M. H.; Chen, S. B.; Wang, B.; Ou, T. M.; Gu, L. Q.; Tan, J. H.; Huang, Z. S. Nucleic Acids Res. 2017, 45, 1606. doi: 10.1093/nar/gkw1195  doi: 10.1093/nar/gkw1195

    36. [36]

      Huang, J.; Li, G.; Wu, Z.; Song, Z.; Zhou, Y.; Shuai, L.; Weng, X.; Zhou, X.; Yang, G. Chem. Commun. 2009, 8, 902. doi: 10.1039/b819789j  doi: 10.1039/b819789j

    37. [37]

      Czirok, J. B.; Bojtar, M.; Hessz, D.; Baranyai, P.; Drahos, L.; Kubinyi, M.; Bittera, I. Sensor Actuat B-Chem. 2013, 182, 280. doi: 10.1016/j.snb.2013.02.046  doi: 10.1016/j.snb.2013.02.046

    38. [38]

      Wang, D.; Zhang, X.; He, C.; Duan, C. Org. Biomol. Chem. 2010, 8, 2923. doi: 10.1039/C004148C  doi: 10.1039/C004148C

    39. [39]

      Kim, H. N.; Lee, E. H.; Xu, Z.; Kim, H. E.; Lee, H. S.; Lee, J. H.; Yoon, J. Biomaterial 2012, 33, 2282. doi: 10.1016/j.biomaterials.2011.11.073  doi: 10.1016/j.biomaterials.2011.11.073

    40. [40]

      Street, S.; Chin, D.; Hollingworth, G.; Berry, M.; Morales, J. C.; Galan, M. C. Chem. Eur. J. 2017, 23, 6953. doi: 10.1002/chem.201700140  doi: 10.1002/chem.201700140

    41. [41]

      Chen, J. S.; Zhou, P. W.; Li, G. Y.; Chu, T. S.; He, G. Z. J. Phys. Chem. B, 2013, 117, 5212. doi: 10.1021/jp4017757  doi: 10.1021/jp4017757

    42. [42]

      Romanucci, V.; Marchand, A.; Mendoza, O.; D'Alonzo, D.; Zarrelli, A.; Gabelica, V.; Fabio, G. D. ACS Med. Chem. Lett. 2016, 7, 256. doi: 10.1021/acsmedchemlett.5b00408  doi: 10.1021/acsmedchemlett.5b00408

    43. [43]

      Fleming, A. M.; Ding, Y.; Alenko, A.; Burrows, C. J. ACS Infect. Dis. 2016, 2, 674. doi: 10.1021/acsinfecdis.6b00109  doi: 10.1021/acsinfecdis.6b00109

    44. [44]

      Xu, X. L.; Wang, J.; Yu, C. L.; Chen, W.; Li, Y. C.; Li, Y.; Zhang, H. B.; Yang, X. D. Bioorg. Med. Chem. Lett. 2014, 24, 4926. doi: 10.1016/j.bmcl.2014.09.045  doi: 10.1016/j.bmcl.2014.09.045

    45. [45]

      Elshaarawy, R. F. M.; Kheiralla, Z. H.; Rushdy, A. A.; Janiak, C. Inorg. Chim. Acta 2014, 421, 110. doi: 10.1016/j.ica.2014.05.029  doi: 10.1016/j.ica.2014.05.029

    46. [46]

      Ranke, J.; Cox, M.; Muller, A.; Schmidt, C.; Beyersmann, D. Toxicol. Environ. Chem. 2006, 88, 273. doi: 10.1080/02772240600589505  doi: 10.1080/02772240600589505

    47. [47]

      Luo, X.; Qian, Y. Chin. J. Org. Chem. 2013, 33, 2423.  doi: 10.6023/cjoc201305034

    48. [48]

      Manojkumar, K.; Charan, K. T. P.; Sivaramakrishna, A.; Jha, P. C.; Khedkar, V. M.; Siva, R.; Jayaraman, G.; Vijayakrishna, K. Biomacromolecules 2015, 16, 894. doi: 10.1021/bm5018029  doi: 10.1021/bm5018029

    49. [49]

      Rao, L.; Dworkin, J. D.; Nell, W. E.; Bierbach, U. J. Phys. Chem. B 2011, 115, 13701. doi: 10.1021/jp207265s  doi: 10.1021/jp207265s

    50. [50]

      Georgiades, S. N.; Karim, N. H. A.; Suntharalingam, K.; Vilar, R. Angew. Chem. Int. Ed. 2010, 49, 4020. doi: 10.1002/anie.200906363  doi: 10.1002/anie.200906363

    51. [51]

      Raju, G.; Vishwanath, S.; Prasad, A.; Patel, B. K.; Prabusankar, G. J. Mol. Struct. 2016, 1107, 291. doi: 10.1016/j.molstruc.2015.11.064  doi: 10.1016/j.molstruc.2015.11.064

    52. [52]

      Zhou, J.; Chang, A.; Wang, L.; Liu, Y.; Liu, X.; Shangguan, D. Org. Biomol. Chem. 2014, 12, 9207. doi: 10.1039/C4OB01274G  doi: 10.1039/C4OB01274G

    53. [53]

      Wang, K. R.; Qian, F.; Sun, Q.; Ma, C. L.; Rong, R. X.; Cao, Z. R., Wang, X. M.; Li, X. L. Chem. Biol. Drug Des. 2016, 87, 664. doi: 10.1111/cbdd.12698  doi: 10.1111/cbdd.12698

    54. [54]

      Ou, Z. Z.; Ju, B. L.; Gao, Y. Y.; Wang, Z. C.; Huang, G.; Qian, Y. M. Acta Phys. -Chim. Sin. 2015, 31, 2386.  doi: 10.3866/PKU.WHXB201510l3

    55. [55]

      Loganathan, R.; Ramakrishnan, S.; Suresh, E.; Riyasdeen, A.; Akbarsha, M. A.; Palaniandavar, M. Inorg. Chem. 2012, 51, 5512. doi: 10.1021/ic2017177  doi: 10.1021/ic2017177

    56. [56]

      Barton, J. K.; Goldberg, J. M.; Kumar, C. V.; Turro, N. J. J. Am. Chem. Soc. 1986, 108, 2081. doi: 10.1021/ja00268a057  doi: 10.1021/ja00268a057

    57. [57]

      Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Biochemistry 1993, 32, 2573. doi: 10.1021/bi00061a015  doi: 10.1021/bi00061a015

    58. [58]

      Ou, Z.; Wang, Y.; Gao, Y.; Wang, X.; Qian, Y.; Li, Y.; Wang, X. J. Inorg. Biochem. 2017, 166, 126. doi: 10.1016/j.jinorgbio.2016.11.012  doi: 10.1016/j.jinorgbio.2016.11.012

    59. [59]

      Sun, D.; Liu, Y.; Yu, Q.; Liu, D.; Zhou, Y.; Liu, J. J. Inorg. Biochem. 2015, 150, 90. doi: 10.1016/j.jinorgbio.2015.04.003  doi: 10.1016/j.jinorgbio.2015.04.003

    60. [60]

      Xu, X.; Wang, X.; Li, Y.; Wang, Y.; Yang, L. Nucleic Acids Res. 2012, 40, 7622. doi: 10.1093/nar/gks517  doi: 10.1093/nar/gks517

    61. [61]

      Chenoweth, D. M.; Dervan, P. B. Proc. Nat. Acad. Sci. USA 2009, 106, 13175. doi: 10.1073/pnas.0906532106  doi: 10.1073/pnas.0906532106

    62. [62]

      Ghosh, S.; Mendoza, O.; Cubo, L.; Rosu, F.; Gabelica, V.; White, A. J. P.; Vilar, R. Chem. Eur. J. 2014, 20, 4772. doi: 10.1002/chem.201304905  doi: 10.1002/chem.201304905

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    3. [3]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    7. [7]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    17. [17]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    18. [18]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    19. [19]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    20. [20]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

Metrics
  • PDF Downloads(10)
  • Abstract views(616)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return