Citation: HE Xi, L Xiaoyu, FAN Xi, LIN Wenjun, LI Haoran, WANG Congmin. Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 896-903. doi: 10.3866/PKU.WHXB201711271 shu

Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption

  • Corresponding author: WANG Congmin, chewcm@zju.edu.cn
  • Received Date: 27 October 2017
    Revised Date: 23 November 2017
    Accepted Date: 23 November 2017
    Available Online: 27 August 2017

    Fund Project: National Natural Science Foundation of China 21322602National Natural Science Foundation of China 21176205The project was supported by the National Key Basic Research Program of China (973) (2015CB251401), National Natural Science Foundation of China (21176205, 21322602), Zhejiang Provincial Natural Science Foundation of China (LZ17B060001), and Fundamental Research Funds of the Central Universitiesthe National Key Basic Research Program of China (973) 2015CB251401Zhejiang Provincial Natural Science Foundation of China LZ17B060001

  • The anion-functionalization strategy has been proposed and applied for the synthesis of macro-porous resins [IRA-900][An], thus realizing anultra-high SO2 adsorption capacity (>10 mmol·g-1) at 101.3 kPa and 20 ℃. Compared with the normal azole-based anion-functionalized resins, the poly(imidazolyl)borate anion-functionalized resin [IRA-900][B(Im)4] exhibited an outstanding adsorption capacity at low SO2 partial pressures (10.62 mmol·g-1 at 20 ℃ and 10.13 kPa). From the results of the IR spectrum investigation and DFT calculations, the multiple-site adsorption mechanism was verified. On account of the unique tetrahedral configuration of [B(im)4], the conjugation and electronic communication between the electronegative nitrogen atoms were disrupted, making them behave as local reactive sites. Therefore, at least four electronegative nitrogen atoms could be provided by one [B(im)4] to react with SO2 without evident adsorption enthalpy deterioration (from -50.6 kJ·mol-1 to -37.2 kJ·mol-1) during the continuous SO2 capture; this was responsible for the ultra-high SO2 adsorption capacity achieved by [IRA-900][B(Im)4] at low partial pressures. Moreover, the thermal stability and reversibility of [IRA-900][B(Im)4] for SO2 capture and desorption were investigated. Six cycles where the adsorption was carried out at 20 ℃ and 10.13 kPa and the regeneration was performed at 70 ℃ demonstrated the adequate reversibility of [IRA-900][B(Im)4] for SO2 capture, showing the resin's great potential for industrial desulfurization. Thus, the anion-functionalization strategy and multiple-site adsorption behavior provide new perspectives to realize effective SO2 capture from flue gas.
  • 加载中
    1. [1]

      Ilutiu-Varvara, D. A.; Radulescu, D. Stud. Univ. Babes-Bol. Chem. 2013, 58 (2), 143.
       

    2. [2]

      Wang, X. L.; Deng, J. P. Aer. Adv. Eng. Res. 2015, 39, 1207. doi: 10.2991/icadme-15.2015.222  doi: 10.2991/icadme-15.2015.222

    3. [3]

      Lehmann, J.; Solomon, D.; Zhao, F. J.; McGrath, S. P. Environ. Sci. Technol. 2008, 42 (10), 3550. doi: 10.1021/es702315g  doi: 10.1021/es702315g

    4. [4]

      Saastamoinen, J. J. Ind. Eng. Chem. Res. 2007, 46 (22), 7308. doi: 10.1021/ie070567p  doi: 10.1021/ie070567p

    5. [5]

      Manovic, V.; Anthony, E. J. Fuel 2008, 87 (8–9), 1564. doi: 10.1016/j.fuel.2007.08.022  doi: 10.1016/j.fuel.2007.08.022

    6. [6]

      Basinas, P.; Grammelis, P.; Grace, J. R.; Lim, C. J.; Skodras, G.; Sakellaropoulos, G. P. Green Energy Technol. 2010, 329. doi: 10.1007/978-1-4419-1017-2_20  doi: 10.1007/978-1-4419-1017-2_20

    7. [7]

      Wu, Y.; Chen, X. P.; Radosz, M.; Fan, M. H.; Dong, W.; Zhang, Z. L.; Yang, Z. Fuel 2014, 125, 50. doi: 10.1016/j.fuel.2014.02.014  doi: 10.1016/j.fuel.2014.02.014

    8. [8]

      Dong, R. F.; Lu, H. F.; Yu, Y. S.; Zhang, Z. X. Appl. Energ. 2012, 97, 185. doi: 10.1016/j.apenergy.2011.12.039  doi: 10.1016/j.apenergy.2011.12.039

    9. [9]

      Woodis, T. C.; Cummings, J. M.; Hunter, G. B. Environ. Sci. Technol. 1973, 7 (9), 827. doi: 10.1021/es60081a001  doi: 10.1021/es60081a001

    10. [10]

      Srivastava, R. K.; Jozewicz, W.; Singer, C. Environ. Prog. 2001, 20 (4), 219. doi: 10.1002/ep.670200410  doi: 10.1002/ep.670200410

    11. [11]

      Yang, D. Z.; Hou, M. Q.; Ning, H.; Zhang, J. L.; Ma, J.; Han, B. X. Phys. Chem. Chem. Phys. 2013, 15 (41), 18123. doi: 10.1002/cssc.201300224  doi: 10.1002/cssc.201300224

    12. [12]

      Heldebrant, D. J.; Koech, P. K.; Yonker, C. R. Energ. Environ. Sci. 2010, 3 (1), 111. doi: 10.1039/b916550a  doi: 10.1039/b916550a

    13. [13]

      Deng, R. P.; Jia, L. S.; Song, Q. Q.; Su, S.; Tian, Z. B. J. Hazard. Mater. 2012, 229, 398. doi: 10.1016/j.jhazmat.2012.06.020  doi: 10.1016/j.jhazmat.2012.06.020

    14. [14]

      Gurkan, B. E.; de la Fuente, J. C.; Mindrup, E. M.; Ficke, L. E.; Goodrich, B. F.; Price, E. A.; Schneider, W. F.; Brennecke, J. F. J. Am. Chem. Soc. 2010, 132 (7), 2116. doi: 10.1021/ja909305t  doi: 10.1021/ja909305t

    15. [15]

      Srivastava, R. K.; Jozewicz, W. J. Air Waste. Manage. 2001, 51 (12), 1676. doi: 10.1080/10473289.2001.10464387  doi: 10.1080/10473289.2001.10464387

    16. [16]

      Slater, A. G.; Cooper, A. I. Science 2015, 348, 6238. doi: 10.1126/science.aaa8075  doi: 10.1126/science.aaa8075

    17. [17]

      Thomas, A. Angew. Chem. Int. Edit. 2010, 49 (45), 8328. doi: 10.1002/anie.201000167  doi: 10.1002/anie.201000167

    18. [18]

      Drage, T. C.; Snape, C. E.; Stevens, L. A.; Wood, J.; Wang, J. W.; Cooper, A. I.; Dawson, R.; Guo, X.; Satterley, C.; Irons, R. J. Mater. Chem. 2012, 22 (7), 2815. doi: 10.1039/c2jm12592g  doi: 10.1039/c2jm12592g

    19. [19]

      Dawson, R.; Cooper, A. I.; Adams, D. J. Polym. Int. 2013, 62 (3), 345. doi: 10.1002/pi.4407  doi: 10.1002/pi.4407

    20. [20]

      Liao, P. Q.; Chen, H. Y.; Zhou, D. D.; Liu, S. Y.; He, C. T.; Rui, Z. B.; Ji, H. B.; Zhang, J. P.; Chen, X. M. Energ. Environ. Sci. 2015, 8 (3), 1011. doi: 10.1039/c4ee02717e  doi: 10.1039/c4ee02717e

    21. [21]

      Cui, X. L.; Yang, Q. W.; Yang, L. F.; Krishna, R.; Zhang, Z. G.; Bao, Z. B.; Wu, H.; Ren, Q. L.; Zhou, W.; Chen, B. L.; et al. Adv. Mater. 2017, 29 (28), 1606929. doi: 10.1002/adma.201606929  doi: 10.1002/adma.201606929

    22. [22]

      Yang, S. H.; Sun, J. L.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I. F.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; et al. Nat. Chem. 2012, 4 (11), 887. doi: 10.1038/NCHEM.1457  doi: 10.1038/NCHEM.1457

    23. [23]

      Savage, M.; Cheng, Y. G.; Easun, T. L.; Eyley, J. E.; Argent, S. P.; Warren, M. R.; Lewis, W.; Murray, C.; Tang, C. C.; Frogley, M. D.; et al. Adv. Mater. 2016, 28 (39), 8705. doi: 10.1002/adma.201602338  doi: 10.1002/adma.201602338

    24. [24]

      Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J. Angew. Chem. Int. Edit. 2004, 43 (18), 2415. doi: 10.1002/anie.200353437  doi: 10.1002/anie.200353437

    25. [25]

      Zhang, S. J.; Sun, N.; He, X. Z.; Lu, X. M.; Zhang, X. P. J. Phys. Chem. Ref. Data 2006, 35 (4), 1475. doi: 10.1063/1.2204959  doi: 10.1063/1.2204959

    26. [26]

      Lin, H.; Bai, P.; Guo, X. H. Asian J. Chem. 2014, 26 (9), 2501. doi: 10.14233/ajchem.2014.15800  doi: 10.14233/ajchem.2014.15800

    27. [27]

      Yang, D. Z.; Hou, M. Q.; Ning, H.; Ma, J.; Kang, X. C.; Zhang, J. L.; Han, B. X. ChemSusChem 2013, 6 (7), 1191. doi: 10.1002/cssc.201300224  doi: 10.1002/cssc.201300224

    28. [28]

      Mondal, A.; Balasubramanian, S. J. Phys. Chem. B. 2016, 120 (19), 4457. doi: 10.1021/acs.jpcb.6b02553  doi: 10.1021/acs.jpcb.6b02553

    29. [29]

      Zeng, S. J.; Gao, H. S.; Zhang, X. C.; Dong, H. F.; Zhang, X. P.; Zhang, S. J. Chem. Eng. J. 2014, 251, 248. doi: 10.1016/j.cej.2014.04.040  doi: 10.1016/j.cej.2014.04.040

    30. [30]

      Cui, G. K.; Wang, C. M.; Zheng, J. J.; Guo, Y.; Luo, X. Y.; Li, H. R. Chem. Commun. 2012, 48 (20), 2633. doi: 10.1039/c2cc16457d  doi: 10.1039/c2cc16457d

    31. [31]

      Chen, K. H.; Lin, W. J.; Yu, X. N.; Luo, X. Y.; Ding, F.; He, X.; Li, H. R.; Wang, C. M. AIChE J. 2015, 61 (6), 2028. doi: 10.1002/aic.14793  doi: 10.1002/aic.14793

    32. [32]

      Wang, C. M.; Cui, G. K.; Luo, X. Y.; Xu, Y. J.; Li, H. R.; Dai, S. J. Am. Chem. Soc. 2011, 133 (31), 11916. doi: 10.1021/ja204808h  doi: 10.1021/ja204808h

    33. [33]

      Cui, G. K.; Lin, W. J.; Ding, F.; Luo, X. Y.; He, X.; Li, H. R.; Wang, C. M. Green Chem. 2014, 16 (3), 1211. doi: 10.1039/c3gc41458b  doi: 10.1039/c3gc41458b

    34. [34]

      Tang, H. R.; Lu, D. M. ChemPhysChem 2015, 16 (13), 2854. doi: 10.1002/cphc.201500369  doi: 10.1002/cphc.201500369

    35. [35]

      He, X.; Mei, K.; Dao, R. N.; Cai, J. S.; Lin, W. J.; Kong, X. Q.; Wang, C. M. AIChE J. 2017, 63 (7), 3008. doi: 10.1002/aic.15647  doi: 10.1002/aic.15647

    36. [36]

      Srinivasan, A.; Grutzeck, M. W. Environ. Sci. Technol. 1999, 33 (9), 1464. doi: 10.1021/es9802091  doi: 10.1021/es9802091

    37. [37]

      Alesi, W. R.; Kitchin, J. R. Ind. Eng. Chem. Res. 2012, 51 (19), 6907. doi: 10.1021/ie300452c  doi: 10.1021/ie300452c

    38. [38]

      Lee, H. J.; Lee, K. I.; Kim, M.; Suh, Y. W.; Kim, H. S.; Lee, H. ACS Sustain. Chem. Eng. 2016, 4 (4), 2012. doi: 10.1021/acssuschemeng.5b01325  doi: 10.1021/acssuschemeng.5b01325

    39. [39]

      Trofimenko, S. J. Am. Chem. Soc. 1967, 89 (13), 3170. doi: 10.1021/ja00989a017  doi: 10.1021/ja00989a017

    40. [40]

      Becke, A. D. Phys. Rev. A 1988, 38 (6), 3098. doi: 10.1103/PhysRevA.38.3098  doi: 10.1103/PhysRevA.38.3098

    41. [41]

      Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37 (2), 785. doi: 10.1103/PhysRevB.37.785  doi: 10.1103/PhysRevB.37.785

    42. [42]

      Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913  doi: 10.1063/1.464913

    43. [43]

      Firaha, D. S.; Holloczki, O.; Kirchner, B. Angew. Chem. Int. Edit. 2015, 54 (27), 7805. doi: 10.1002/anie.201502296  doi: 10.1002/anie.201502296

    44. [44]

      Wang, C. M.; Luo, X. Y.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Angew. Chem. Int. Edit. 2011, 50 (21), 4918. doi: 10.1002/anie.201008151  doi: 10.1002/anie.201008151

    45. [45]

      Goeppert, A.; Meth, S.; Olah, G. A.; Prakash, S. G. K. Energy Environ. Sci. 2010, 3, 1949. doi: 10.1039/C0EE00136H  doi: 10.1039/C0EE00136H

    46. [46]

      Qi, G. G.; Wang, Y. B.; Estevez, L.; Duan, X. N.; Anako, N.; Park, A. H. A.; Li, W.; Jones, C. W.; Giannelis, E. P. Energy Environ. Sci. 2011, 4 (2), 444. doi: 10.1039/c0ee00213e  doi: 10.1039/c0ee00213e

    47. [47]

      Xiang, S. C.; Zhang, Z. J.; Zhao, C. G.; Hong, K. L.; Zhao, X. B.; Ding, D. R.; Xie, M. H.; Wu, C. D.; Das, M. C.; Gill, R.; et al. Nat. Commun. 2011, 2 (1), 1. doi: 10.1038/ncomms1206  doi: 10.1038/ncomms1206

    48. [48]

      Liao, P. Q.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Nat. Commun. 2015, 6, 8697. doi: 10.1038/ncomms969  doi: 10.1038/ncomms969

  • 加载中
    1. [1]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    5. [5]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    6. [6]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    7. [7]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    8. [8]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    9. [9]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    10. [10]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    11. [11]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    15. [15]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    16. [16]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    17. [17]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    18. [18]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    19. [19]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    20. [20]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

Metrics
  • PDF Downloads(9)
  • Abstract views(153)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return